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Résumé

Les collisions d’ions lourds peuvent être utilisées pour étudier les propiétés de la matière

nucléaire soumise à des conditions extrêmes. Ces collisions concentrent suffisament d’énergie

à l’intérieur d’un volume réduit pour faire fondre les noyaux qui entrent en collision, pro-

duisant ainsi un plasma de quarks et de gluons. Ce plasma semble atteindre rapidement

un équilibre thermique local, permettant d’étudier ses propriétés à l’aide d’une approche

hydrodynamique. Dans cette thèse, la production de hadrons et de photons dans les colli-

sions d’ions lourds est étudiée à l’aide d’un modèle hydrodynamique sophistiqué qui inclut

des conditions initiales réalistes, des équations hydrodynamiques complètes avec viscosités

de cisaillement et de volume, ainsi qu’un traitement approprié des interactions finales des

hadrons. Ce modèle est comparé avec succès à plusieurs observables hadroniques mesurées

au “Relativistic Heavy Ion Collider” (RHIC) et au Grand collisionneur de hadrons (LHC),

et il est montré que la viscosité de volume est essentielle à ce succès. À l’aide de ce même

modèle hydrodynamique, la production de photons directs dans les collisions d’ions lourds

est étudiée. L’effet de la viscosité sur le taux de production des photons est étudié, et la

méthode pour calculer l’anisotropie en quantité de mouvement des photons directs est clar-

ifiée. Il est montré que le calcul du spectre et de l’anisotropie des photons directs est à

l’intérieur de l’incertitude des mesures expérimentales ou légèrement inférieurs à celles-ci.
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Abstract

Heavy ion collisions can be used to study the properties of nuclear matter in extreme con-

ditions. These events concentrate enough energy in a small volume to melt the colliding

nuclei into a plasma of quarks and gluons. This plasma appears to achieve near local ther-

mal equilibrium during its very short lifetime, allowing for its long scale properties to be

investigated with hydrodynamics. In this thesis, the production of hadrons and photons

in heavy ion collisions is studied using a sophisticated hydrodynamical model that includes

realistic initial conditions, hydrodynamical equations with both shear and bulk viscosities,

along with an appropriate treatment of final state hadronic rescatterings. A wide range of

hadronic observables, measured at the Relativistic Heavy Ion Collider (RHIC) and the Large

Hadron Collider (LHC), are shown to be described well by this model, and bulk viscosity is

found to be essential to this level of agreement with data. Building on this successful model,

direct photon production in heavy ion collisions is studied. The effect on photon emission of

the emitting medium’s viscosity is investigated, and the method for evaluating direct photon

momentum anisotropies for comparisons with experimental measurements is clarified. Both

the direct photon spectrum and momentum anisotropy are shown to be within or slightly

below the uncertainties of available experimental measurements.
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original and is in the process of being published. The clarification on the proper evaluation

of momentum anisotropies in Section 7.2 is unpublished, although preliminary and periph-

eral investigations on the matter were published previously with collaborators in conference

proceedings [3, 4].

Investigations on perturbative QCD at low transverse momentum presented in Appendix A

is my original work.
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Introduction
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Chapter 1

Studying nuclear matter under

extreme conditions

Four decades ago the establishment of the Standard Model inaugurated a new era for particle

physics. All interactions known to be important for subatomic physics had been incorporated

into a single quantum field theory framework. Although open questions do remain about the

Standard Model [5, Chapter 11], its status as a solid effective description of the subatomic

world is uncontested.

This remarkable understanding of the underlying interactions of elementary particles is

by no means the end of the story. An equally interesting part of the work remains: using

this knowledge to understand complex systems of elementary particles. This thesis is built

around this idea, for systems of particles interacting through the strong nuclear force.

The strong nuclear force is one of the three elementary forces described by the Standard

Model, the other ones being the weak nuclear force and the electromagnetic interaction.

Quantum chromodynamics (QCD) is the quantum field theory within the Standard Model

that describes strong nuclear interactions. Its fundamental degrees of freedom are quarks

and gluons, which carry a charge called “colour”. One of the most interesting property of

QCD is that such charged, or “coloured”, objects have never been observed directly: quarks

and gluons are always found in composite colour-neutral objects called hadrons. Protons

and neutrons are the best known examples of hadrons.

This neutralisation of the colour charge is called “confinement”. It is a phenomenon

that has yet to be fully understood from first principles. It is nevertheless closely related

to another distinctive feature of QCD: asymptotic freedom, the weakening of the interac-

tion between coloured objects as the interaction energy increases. Asymptotic coupling is

illustrated on Figure 1.1 by plotting the strength of the strong nuclear force, as given by

the value of the strong coupling constant αs, in a variety of processes at different energy
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Figure 1.1: Running of the strong coupling constant αs with the energy scale Q (Figure from
[6, Section 9.3.12])

scales Q. Since the value of αs is fairly small at those high energies, it is possible to use

perturbative techniques to evaluate its evolution in Q directly from QCD. This calculation

is shown on Figure 1.1 to be in very good agreement will all measurements.

Quantum chromodynamics is now a well-established theory which provides an accurate

description of strong interactions in a number of very different measurements, from the

traditional hadron spectroscopy to the successful parton model picture of high energy colli-

sions. With this solid theory in hand, one can begin asking more complex questions about

the strong nuclear interaction. One area of particular interest is the collective behaviour of

systems dominated by the strong interaction.

1.1 Hot nuclear matter

Asymptotic freedom leads to a straightforward conclusion about the collective behaviour of

nuclear matter: when a system of hadrons is heated to high temperatures, the force that

binds the quarks and gluons within hadrons will weaken as the interaction energy of the

constituents increases. Eventually quarks and gluons will be freed from hadrons and will

form a plasma of colour-charged particles. This latter state of matter was given the name

“quark-gluon plasma” (QGP) [7].

The transition from a thermally equilibrated system of interacting hadrons to a quark-

gluon plasma — a process referred to as “deconfinement” — is well-studied theoretically.

The thermodynamic properties of the gas of hadrons can be calculated with effective mod-

els of hadronic interactions, while perturbative QCD techniques can be used at very high
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Figure 1.2: (a) Recent lattice calculation of the pressure of a thermalised QCD medium for
temperatures between 100 and 500 MeV. Below 200 MeV, the lattice calculation matches well
the pressure computed from an effective hadronic model (hadron resonance gas — HRG).
At high temperature, perturbative calculations of the QGP pressure are shown. The three
different perturbative calculation illustrate the uncertainty in such calculations. The Stefan-
Boltzmann limit of the pressure, which corresponds to an ideal gas of free quarks and gluons,
is indicated by an arrow on the right axis (b) Energy density, entropy density and speed of
sounds for the same lattice calculation (both figures from [8])

temperatures where αs(Q ∼ T ) is small. Neither approaches works in the interesting re-

gion where hadronic degrees of freedom give way to quark and gluon ones. This gap was

nevertheless narrowed down, over the past two decades, by numerical simulations of lattice

QCD.

The pressure of hot QCD matter from a recent lattice calculation [8] is shown on Fig-

ure 1.2a. The change in the degrees of freedom dominating the thermodynamics can be

better seen in Figure 1.2b, where the rapid change in the temperature-scaled energy density

ε/T 4 occurring between 100 and 200 MeV1 is followed by a slow growth of the energy density

toward the Stefan-Boltzmann limit, which is the value for an ideal gas of quarks and gluons.

Deconfinement of QCD matter is thus expected at energy densities of ε ∼ 1 GeV/fm3, which

is close to 10 times the normal density of nuclear matter.

Ultrarelativistic collisions of heavy ions were suggested early (see Ref. [9, Section 1.2] and

references therein) as a controlled way of reaching the energy densities required to create

1For reference, 1 MeV≈ 1.2× 1010 K.
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Figure 1.3: (a) Illustration of the spacetime evolution of a heavy ion collision (adapted from
[11]) (b) Illustration of the energy deposition occurring in heavy ion collisions (adapted from
[12])

and study the quark-gluon plasma2. This aim was achieved slightly more than a decade ago

with the commissioning of the Relativistic Heavy Ion Collider at the Brookhaven National

Laboratory.

1.2 Ultrarelativistic heavy ion collisions

The Relativistic Heavy Ion Collider (RHIC) is generally considered to be the first hadron

collider to bring the experimental study of deconfined nuclear matter to a quantitative level.

Evidence for the production of deconfined nuclear matter in heavy ion collisions had been

accumulated at previous nucleus colliders, but RHIC was the first to claim unambiguous

observation of a new state of nuclear matter, the quark-gluon plasma [9].

In 2010 the European Organization for Nuclear Research’s (CERN) Large Hadron Col-

lider (LHC) joined the fray. Better known for its proton collision program, which boosts

among other successes the discovery of the Higgs boson, the LHC also has a comprehen-

sive program of nucleus-nucleus collisions. A higher energy collider than RHIC, the LHC

2 Deconfined nuclear matter and quark-gluon plasma (QGP) are used as synonyms in this thesis, as is
common in the field of heavy ion physics. It is important to note that there is no sharp transition (at
least at small baryon number density) between a thermal system of hadronic degrees of freedom and one
with quark and gluon degrees of freedom [10, Section 2.4]. The point at which hot nuclear matter should be
referred to as a QGP is thus ambiguous. Moreover the properties of hot nuclear matter are expected to change
significantly between the temperatures typically achieved in modern heavy ion colliders (T ∼ 300−600 MeV),
where deconfined matter is strongly coupled, and asymptotically high temperatures where a gas of weakly
interacting quarks and gluons is expected.
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confirmed and complemented the numerous observations and findings made at RHIC [13].

A great discovery of RHIC was that the QGP behaves as a strongly interacting fluid,

and not a weakly interacting gas of quarks and gluons as previously expected . Although

the dynamics of heavy ion collisions is complex, many features of the collisions at RHIC

and the LHC are dominated by the creation and expansion of the quark-gluon plasma, with

suggestive evidence that the QGP is close to local thermal equilibrium. That near thermal

equilibrium could be achieved, locally, in a plasma of quarks and gluons on scales smaller

than the size of a nucleus was a striking discovery.

A sketch of the present understanding of the spacetime evolution of heavy ion collisions

is shown on Figure 1.3a. At first, two nuclei moving in opposite directions at nearly the

speed of light undergo a collision. Upon collision, a deposition of excited coloured matter

occurs in the region of overlap of the nuclei (Figure 1.3b). This excited matter appears

to go through a rapid process of thermalisation that is not yet fully understood. This

pre-equilibrium dynamics leads to the establishment of near local thermal equilibrium in

the regions where a sufficiently high energy density was deposited. This all happens on a

timescale of approximately 1 fm ( ∼ 10−24 s).

Once local equilibrium is established, a rapid hydrodynamical expansion of the medium

follows, which progressively reduces the energy density of the medium. Hydrodynamics

expansion is thought to continue after the quark-gluon plasma goes through confinement into

hadronic degrees of freedom [13, Section 2]. Eventually the medium becomes too rarefied

to maintain local equilibrium, and on a timescale of around 10 fm its expansion changes in

nature to become closer to the expansion of a weakly interacting gas than that of a fluid.

Interactions among hadrons become less and less frequent as hadrons fly out of the collision

region, toward the detectors.

This picture is in large part based on the great success of hydrodynamical models in

describing hadronic measurements made at RHIC and the LHC. There are however multiple

evidence for the formation of a quark-gluon plasma in heavy ion collisions. One of the most

compelling is the suppression of hadron production [13, Section 2], which is the topic of the

next section.
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Figure 1.4: (a) Illustration of hard hadron production in proton-proton collisions (Equa-
tion 1.1) compared to heavy ion collisions. Hard hadrons produced in heavy ion collisions
carry less energy than the same process in proton-proton collisions, due to energy loss of
their father parton to the quark-gluon plasma. (figure adapted from [14]) (b) Suppression of
the charged hadron spectra measured at the LHC. See text for explanations of the different
curves. (figure adapted from [15])

1.3 Hard probes and energy loss

The production of hard3 hadrons in proton-proton collisions is very well understood, to the

point that they can be used as “probes” of the dynamics of heavy ion collisions. Their

production mechanism is illustrated at the top of Figure 1.4a. A parton (a quark or a gluon)

from each proton undergoes a hard scattering. The scattered partons then go through a

non-perturbative color neutralisation process, called fragmentation, which results in final

3A “hard” scattering in QCD is a collision in which the participant undergo a momentum exchange much
larger than the scale of QCD, ΛQCD ∼ 200 MeV. In collider experiments, particles produced with transverse
momentum larger than ∼ 5 GeV are considered hard.
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state partons to be converted into hadrons. This process can be written schematically as4

E
d3σpp
dp

=
∑
a,b,c,d

fa/p(xa)⊗ fb/p(xb)⊗ dσ̂ ⊗Dh/c(zc) (1.1)

where

• fa/p(xa) is the parton distribution function, representing the probability of finding a

parton of type5 “a” and momentum pa = xaP in a proton of momentum P

• dσ̂ is a differential parton-parton cross-section that can be evaluated perturbatively

from first principles in QCD

• Dh/c(zc) is the fragmentation function, representing the probability for a parton of type

“c” to fragment into a hadron “h” carrying a fraction zc of the parton’s momentum

and ⊗ represents integration over xa/b and zc with the appropriate integration measure and

kinematic cuts.

Parton distribution functions can be measured with dilepton production in proton-proton

collisions (commonly referred to as Drell-Yan processes), and fragmentation functions can

be measured in electron-position annihilation into hadrons.

Equation 1.1 has been shown to be in very good agreement with hard hadron production

in proton-proton collisions [16]. Essentially the same approach can be used to compute the

production of hard photon, dilepton and weak boson (Z/W±) in proton-proton collisions,

with a similar good agreement with data being observed [17, 18].

Equation 1.1 has not formally been shown to be applicable to nucleus-nucleus colli-

sions. Nevertheless, hard photon, dilepton and weak boson production is still very well

described [19, 20, 21] by approximating the nucleus-nucleus collisions as an incoherent su-

perposition of proton-proton collisions:

E
d3NAA

dp
≈ Nbin

σinelpp

E
d3σpp
dp

(1.2)

where Nbin is the number of nucleon-nucleon collisions in the nucleus-nucleus collision, which

can be computed in models of nucleon interactions such as the Glauber model [22]. The

inelastic nucleon-nucleon cross-section σinelpp is used to relate the differential particle cross-

section in proton-proton collisions from the right-hand-side of Equation 1.2 to the number

of particles produced in nucleus-nucleus collisions on the left-hand-side.

4 The theoretical basis of Equation 1.1 will be reviewed later in this thesis (Section 5.2.1).
5 Gluons and the different flavours of quarks and antiquarks all have different probability distributions.
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Deviations from binary scaling (Equation 1.2) have been observed for hadron production

in heavy ion collisions (e.g. [15]). This departure from binary scaling in fact provided one

of the most solid evidence that a quark-gluon plasma is formed in such collisions. This

is illustrated on Figure 1.4b, which shows the momentum distribution of hadrons in Pb-Pb

collisions at the LHC. The bottom data points are for peripheral collisions — collisions where

the two lead nuclei collide with a small overlap, depositing a limited amount of energy in

the almond-shaped region (as illustrated on Figure 1.3b). The upper data points are for

central collisions in which the two nuclei collide nearly head-on and deposit a large amount

of energy in the interaction region. The solid black line above each data set is the prediction

of Equation 1.2 for different levels of overlap of the colliding nuclei.

Equation 1.2 works reasonably well for peripheral collisions, but overestimates signif-

icantly hadron production in central collisions. This deviation is understood to be at-

tributable to parton energy loss [23], illustrated at the bottom of Figure 1.4a. The first

part of the reaction described by Equations 1.1/1.2 still actually holds: a parton from each

nuclei undergo a hard interaction. However, between the hard parton-parton scattering and

fragmentation into hadrons, the final state parton interacts with the quark-gluon plasma that

is formed around it in the heavy ion collision, as illustrated at the bottom of Figure 1.4a.

These interactions lead to a loss of energy for the parton, which is reflected into an energy

loss for the final hadrons. Since central heavy ion collisions deposit more energy and create a

larger quark-gluon plasma, the parton interacts more with the medium and lose more energy.

On the other hand, peripheral collisions create a smaller and shorter lived QGP, translating

into a much more limited parton and hadron energy loss. Neither electromagnetic or weak

probes are affected: they do not interact significantly through the strong interaction and the

QGP is essentially transparent to them.

Hadron energy loss is one of a number of observations that support the conclusion that

a QGP is created for an extended spacetime region in heavy ion collisions at RHIC and the

LHC. The success of hydrodynamical models in describing a range of measurements is an

additional, and possibly stronger, evidence.

1.4 Hydrodynamical simulation of heavy ion collisions

Hydrodynamics provides an effective description of the long scale properties of any system

that achieves near local thermal equilibrium [24]. Examples of its success are numerous,

ranging from water [25, 26] to ultracold quantum gases and exotic liquid crystals [24].

Whether local equilibrium is achieved in a medium can be inferred from the success of

hydrodynamics in describing its dynamics. The effectiveness of hydrodynamical models in
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Figure 1.5: Relation between the initial energy spatial anisotropy and the final momentum
anisotropy of produced particles (Figure adapted from [27])

describing a wide range of hadronic observables measured in heavy ion collisions is interpreted

as strong evidence that the quark-gluon plasma does achieve local thermal equilibrium during

its short lifetime.

Of all hadronic observables, the angular distribution of hadrons in the plane transverse

to the collision axis is perhaps the most convincing in its support of hydrodynamics. This

owes to the straightforward explanation that hydrodynamics provides for the presence of

large angular anisotropies in the momentum distribution of hadrons, as observed in heavy

ion collisions at both RHIC and the LHC.

The picture that hydrodynamics paints of the quark-gluon plasma’s expansion in the

transverse direction is shown on Figure 1.5. A peripheral heavy ion collision deposits energy

in a highly eccentric shape, as represented on the left-hand-side of Figure 1.5. If local

equilibrium is quickly established in this distribution of matter, its subsequent spacetime

evolution is described by hydrodynamics. This evolution is driven by pressure gradients,

which are much larger along the short axis of the energy deposition. The medium thus

expands faster along the x-axis. At the end of the hydrodynamical evolution, when the

expanding medium is converted to hadronic degrees of freedom, this expansion anisotropy is

imprinted in hadrons, giving them a large momentum anisotropy.

This momentum anisotropy is typically expressed in terms of Fourier coefficients, by

writing the differential momentum distribution of hadrons as

1

2πpT

dN

dpTdφ
=

(
1

2πpT

dN

dpT

)[
1 + 2

∞∑
n=1

vn cos(n(φ−Ψn))

]
(1.3)

where the momentum in the plane transverse to the collision axis is described by the az-

imuthal angle φ and the transverse momentum pT .

The second Fourier coefficient v2 and its event-plane Ψ2 are easiest to understand in
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Figure 1.6: Charged hadron momentum anisotropy compared with a hydrodynamical model’s
calculation (figure from [28])

terms of the picture shown on Figure 1.5. Assuming an idealised collision with an energy

deposition profile as symmetric6 as shown on the left-hand-side of Figure 1.5, the momentum

distribution is well-described by a single Fourier coefficient, v2:

1

2πpT

dN

dpTdφ
=

(
1

2πpT

dN

dpT

)
[1 + 2v2 cos(n(φ−Ψ2))] (1.4)

The angle Ψ2 is the direction where hadrons are dominantly produced in this picture,

which from the right-hand-side of Figure 1.5 can be read to be the x-axis. This angle is thus

perpendicular to the long axis of the initial energy deposition.

A hydrodynamical description of the dynamics of heavy ion collisions thus predict a

specific direction (Ψn) and magnitude (vn) for the azimuthal distribution of hadrons. A very

good quantitative agreement is found between vn measurements7 and hydrodynamical model

predictions, as shown on Figure 1.6.

The success of hydrodynamical models in understanding the azimuthal anisotropy of

6 While the two nuclei depositing the energy are identical and an approximate almond-shape geometry is
expected in peripheral collisions, their energy deposition will never be perfectly symmetric due to quantum
fluctuations and pre-equilibrium dynamics. The energy deposition plotted on Figure 1.5 is thus highly
idealised.

7 Neither vn nor Ψn of a single collision can be measured in heavy ion collisions. The possibility of
measuring Ψn itself would imply that there exists a reference axis from which φ can be measured, which is
not the case. The value of a single event’s vn is not available either, due to the small number of particle
measured in each event. What is measured in heavy ion collisions is rather angular correlations between
particles, averaged over multiple collisions, which can be related to the values of vn or Ψn computed in
hydrodynamical simulations. The closest thing to vn that can be measured is its root-mean-square value
averaged over multiple events.
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(a) (b)

Figure 1.7: (a) Direct photons measured at RHIC in p+p and Au+Au collisions (Figure
from [29]) (b) π0, inclusive photon and direct photon momentum anisotropy measured at
RHIC in Au+Au collisions (Figure adapted from [30]). In both cases, the center-of-mass
energy is

√
sNN = 200 GeV

hadrons is considered a major accomplishment of the model, supporting the (near) local

thermalisation hypothesis. Yet hadrons are not the only particles produced and measured

in heavy ion collisions. Measurements of photon production at both RHIC and the LHC

provided a new opportunity to put to the test hydrodynamical models of heavy ion collisions.

1.5 Electromagnetic probes: a complementary window

into heavy ion collisions

In the hydrodynamical picture of heavy ion collisions presented above, hadrons are produced

in the late stage of the medium’s expansion, or at the system’s edge, in both case because

of the low local energy density in these regions of spacetime. The information carried by

hadrons is consequently dominated by the properties of the periphery and of the later phase

of the medium evolution. This is a limitation of hadronic observables, since they can only

be indirect probes of the quark-gluon plasma.

Photons do not share this limitation, since their mean-free-path in the quark-gluon

plasma is significantly larger than the medium produced in current heavy ion collisions8.

Consequently photons produced at the very center of the QGP, shortly after its formation,

can reach the detectors without significant interactions with the medium surrounding it.

8 The transverse size of the QGP is roughly 10−20 fm. A much larger medium extent, around 300−500 fm,
is necessary for photon interactions with the medium to become significant [31, Introduction].
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They can thus provide information about every spacetime region of the medium, making

them valuable probes of the QGP’s properties.

There are many different sources of photons in heavy ion collisions. There are hadronic

decay photons, which are produced in decays of unstable hadrons through channels such as

π0 → γγ or η → γγ. There are also photons produced through hard parton interactions,

the mechanism described in Section 1.3, which produces photons essentially in the same

way as it produces hadrons. These photons are referred to as prompt photons. Photons

emitted by the quark-gluon plasma during its expansion are called thermal photons. The

term inclusive photons is used to describe the total photon signal, without regard on the

photon’s production mechanism.

Most photons produced in heavy ion collisions are decay photons. While hydrodynamical

models predict that a significant amount of thermal photons is emitted throughout the QGP’s

lifetime, decay photons completely drown their signal. To remedy this problem, experimental

collaborations subtract a large part of this decay photon background by modelling them in

Monte Carlo simulations constrained from hadronic data. The resulting observable is called

direct photons.

Thermal photons are thus accessible through comparisons with direct photons. Prompt

photons are also a significant source of direct photons. Actually prompt photons are essen-

tially the only source of photons in proton-proton collisions, such that photon measurements

from such collisions are used to estimate prompt photons in heavy ion collisions. This method

can be used to show that prompt photons are also the dominant source of photons at high

transverse momentum in heavy ion collisions. This is illustrated on Figure 1.7a, where the

photon spectrum in Au-Au collisions is very well described above pT ∼ 4 GeV by simply

scaling up the spectrum measured in proton-proton collisions. This is an example of support

for binary scaling that was mentioned in Section 1.3.

At low transverse momentum (pT . 4) the direct photon spectrum from Au-Au collisions

shows a large excess of measured photons above the prompt photons baseline. This excess

of photons at low pT was interpreted early as a possible thermal photon signal [32].

The measurement of a large momentum anisotropy of direct photons [30], shown on

Figure 1.7b, made the picture more complicated. The left-hand-side of Figure 1.7b shows

the v2 of pions — which are the main source of decay photons — along with the v2 of inclusive

photons, which is the raw measurements of photons that is dominated by hadronic decay

photons. Since decay photons carry the momentum anisotropy of their parent hadron, it

is expected for inclusive photons to have a v2 similar to that of pions. On the other hand,

it was totally unexpected that direct photons, shown on the right-hand-side of Figure 1.7b,

would also have a v2 of the same magnitude as that of pions. This was one of the most
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striking discovery made at RHIC.

The large direct photon v2 came a surprise because early calculations from hydrodynami-

cal models [33, 34] predicted a fairly small direct photon v2. This discrepancy became known

informally as the “direct photon puzzle” (see Ref. [35] and references therein).

1.6 This thesis

The purpose of this thesis is to provide a state-of-the art calculation of direct photon produc-

tion in heavy ion collisions in order to clarify the status of the direct photon puzzle, which

was the subject of numerous investigations [36, 37, 38, 39, 40] over the past years, and to

determine if the label “puzzle” is still necessary.

This aim is first achieved by using a sophisticated hydrodynamical model of heavy ion

collisions. This model improves upon previous work by including

• a more realistic description of the pre-equilibrium dynamics of the collisions

• a more complete set of hydrodynamical equations to describe the evolution of the

locally thermalised QGP

• a more realistic treatment of the hadronic degrees of freedom in the final stage of the

collisions

A description of this hydrodynamical model is provided in Chapter 3. It is preceded by an

overview of the phenomenology of heavy ion collisions (Chapter 2).

The quality of this hydrodynamical model is shown in Chapter 4 by comparing it with a

wide range of hadronic observables measured at both RHIC and the LHC. Hadronic observ-

ables are used simultaneously to constrain the parameters of the hydrodynamical model and

to verify that, given this choice of parameters, a large set of hadronic measurements can be

well-described. The point is to provide confidence in the hydrodynamical model, which can

then be used to study direct photon production in heavy ion collisions.

Many different ingredients are necessary to compute photon production in heavy ion

collisions. The full description of the formalism used to evaluate prompt and thermal photons

in heavy ion collisions is covered in Chapter 5.

For a complete evaluation of thermal photons, the effect on photon emission of deviation

from local thermal equilibrium of the quark-gluon plasma must be included. Work on this

is presented in Chapter 6.

Comparisons with direct photon measurements from both RHIC and the LHC are shown

in Chapter 7, along with a complete discussion of the results.
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One important topic in this last chapter is the quantification of uncertainties in the direct

photon calculation. This is important both for a proper comparison between the calculations

and the measurements, but also to understand the origin of possible tension with data and to

point toward solutions. This represents the second aim of this thesis: identifying the sources

of uncertainties in the model, to understand to which extent direct photons can currently be

used as probes of the properties of the quark-gluon plasma.
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Notation

• The “mostly-minus” metric is used: gµν = diag(1,−1,−1,−1)

• Natural units are used: ~ = c = kB = 1. Consequently, both spatial and temporal

values are usually given in fermi (1 fm=10−15 m), while energies and momentum are

given in MeV or GeV. The value ~c = 0.1973 GeV fm is used to relate the two units.

• Although there are some exceptions, 4-vectors are usually written in capital letters

(Xµ), with their spatial part in bold minuscule (x) and the norm of their spatial part

in normal minuscule (x ≡ |x|).
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Part II

Phenomenology and theory of heavy

ion collisions
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In this part of the thesis, the general phenomenology of heavy ion collisions is described.

The aim is to provide a brief overview of the available measurements with as little model-

dependence as possible. This first chapter on phenomenology is followed in Chapter 3 by a

description of the hydrodynamical model of heavy ion collisions used in this thesis. Although

emphasis is put on the model used for the present work, general comments positioning the

model with respect to the rest of the field are provided.

18



Chapter 2

Phenomenology of ultrarelativistic

heavy ion collisions

The aim of the present chapter is to provide an overview of the important observations made

in ultrarelativistic heavy ion collisions at RHIC and the LHC. Measurements of hadronic

observables are abundant, in particular for unidentified charged hadrons. Most of what

is known about the quark-gluon plasma formed in heavy ion collisions comes from anal-

ysis of hadronic data. Electromagnetic observables, on the other hand, are an important

complementary probe to hadrons. An overview of the main hadronic and electromagnetic

observables is given in the second and third sections of this chapter, respectively.

The coordinate system used to analyse heavy ion measurements, along with the use of

centrality to classify collisions, are two important features of heavy ion measurements. They

are briefly reviewed in the first section of this chapter.

2.1 Coordinates and centralities

The coordinate system used to report momentum measurements in heavy ion collisions is

the same as traditionally employed in proton-proton collisions. Using the nuclei’s collision

axis as reference, a plane orthogonal to it, the “transverse plane”, is defined. This plane

is illustrated on Figure 2.1. In this plane, momenta are reported by a 2D vector whose

magnitude is the transverse momentum pT with a direction given by the azimuthal angle

φ. As previously mentioned, measurements in φ are not made with respect to any clear

geometrical reference axis, but rather by correlating the azimuthal angle of different sets of
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Figure 2.1: Coordinate system used in relativistic nuclear collisions (adapted from [41])

particles1. Along the collision axis, rapidity y or pseudorapidity η are used as coordinates,

with the collision vertex of the two nuclei serving (y = η = 0) as origin. They are defined

as [42, Appendix B]

y =
1

2
ln
P 0 + P 3

P 0 − P 3
(2.1)

η = − ln tan
θ

2
(2.2)

where P 0 is the particle’s energy, P 3 its momentum along the collision axis, and θ is the

angle with respect to this same axis. For symmetric collisions with identical nuclei of opposite

momenta, the term “midrapidity” is used to refer to the region around y = 0.

Heavy ion collisions are systematically classified by “centralities”, which characterises

how much the two nuclei overlapped in the collision. The most central collisions are head-on

collisions which are expected to have a roughly circular energy deposition region2. Peripheral

collisions produce a smaller, ellipsoidal energy deposition region. The different shapes of the

energy deposition region have a large effect on the subsequent evolution of the QCD medium,

which makes centralities an important tool to classify collisions.

As the geometric overlap of nuclei cannot be measured experimentally, the number of

particles produced in each collision is used as a proxy for centrality. The argument is that

head-on collisions result in larger energy depositions, which produce a larger number of

1 Models of nucleus collisions, such as the Glauber model [22], can be used to define a geometrical
reference axis. While such definitions are useful to picture heavy ion collisions and understanding some of
their properties, it does not represent information that is accessible experimentally.

2 Central collisions result in an approximately circular energy deposition as long as the nuclei themselves
are roughly spherical, which is the case for gold and lead nuclei studied in this thesis. Nuclei such as uranium,
which have an ellipsoid shape, are a different story [43].
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Figure 2.2: (a) Charged hadron multiplicity as a function of pseudorapidity for three central-
ities and (b) charged hadron multiplicity as a function of rapidity for 0-5% centrality, as mea-
sured at the LHC by the ALICE collaboration in Pb-Pb collisions at

√
sNN = 2.76 TeV [44]

particles. The use of this proxy for centrality does not introduce any theoretical ambiguity

as long as centralities are defined with multiplicity in theoretical models as well.

Centralities are quoted as fraction of measured collisions that have the largest particle

production. For example, 0− 5% centrality refers to the subset of 5% of the collisions that

produced the most particles.

2.2 Hadronic observables

The first interesting property of heavy ion collisions is the distribution of particles along the

collision axis. The charged hadron multiplicity with respect to pseudorapidity, as measured

at the LHC, is shown on Figure 2.2a for three different centralities. The multiplicity shows

a double-peak structure around midrapidity, for all centralities. This structure can be best

understood by looking at the multiplicity with respect to rapidity, rather than pseudorapidity.

This is shown on Figure 2.2b for 0−5% centrality, which corresponds to the top data points of

Figure 2.2a. In rapidity the multiplicity is actually flat around midrapidity, for approximately

1-1.5 unit in rapidity. The structure observed in pseudorapidity is understood to originate

from the Jacobian between rapidity and pseudorapidity.

Rapidity invariance has also been observed at RHIC [45]. It is referred to as “boost in-
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variance”3, and it is an important observation in heavy ion collisions: there is a small region

around midrapidity where the mechanism of soft particle production appears to be indepen-

dent of rapidity. The importance of this invariance on hydrodynamical models of heavy ion

collisions was recognized early [46], since analytical solutions of relativistic hydrodynamics

equations can be derived for systems exhibiting boost invariance [46, 47, 48].

(a) (b)

Figure 2.3: (a) Multiplicity of different species of hadrons measured at the LHC, compared
to a thermal model of hadron production (Figure from [49]) (b) Pions, kaons and protons
spectra at the LHC with their multiplicity and mean pT indicated by arrows on the vertical
and horizontal axes, respectively (Data from [50])

The majority of hadrons produced in this central plateau are soft pions. This is shown on

Figure 2.3a, along with the multiplicity of many other hadrons measured in 0-10% centrality

Pb-Pb collisions at the LHC. The different hadronic abundances are described very well by

a simple thermal model, with a temperature of the order of that expected for confinement

(T ∼ 160 MeV) along with a vanishingly small baryon chemical potential. This value for

the baryon chemical potential is a simple consequence of baryons all having approximately

the same multiplicity as their antibaryon.

Hadrons have a non-trivial transverse momentum distribution, shown on Figure 2.3b for

pions, kaons and protons in 30-40% centrality Pb-Pb collisions at the LHC. The multiplic-

ity and average transverse momentum of each species of hadrons is indicated by arrows on

the vertical and horizontal axes, respectively. While the multiplicity is an important ob-

servable, this transverse momentum distribution provides much stronger constraints on the

3 A Lorentz boost is equivalent to a simple shift in rapidity.
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Figure 2.4: (a) v2 of charged hadrons with respect to pseudorapidity, measured at the LHC
(Data from [51]) (b) Different definitions of v2, v4 and v6 of charged hadrons measured at
the LHC (Figure adapted from [52])

mechanisms of hadron production in heavy ion collisions.

The azimuthal anisotropy of hadrons, as introduced in Section 1.4, constitutes another

major observable in heavy ion physics. The pseudorapidity and centrality dependence of the

pT -integrated v2 of charged hadrons is shown on Figure 2.4a. The relative invariance of v2 in

pseudorapidity supports the conclusion reached from Figure 2.2 regarding the existence of

a central plateau for particle production in rapidity4. Moreover, the centrality dependence

of v2 is clear: the more central the collision, the smaller the v2. This is consistent with the

explanation for the origin of v2 given in Section 1.4 in terms of pressure gradients developed

from an anisotropic energy deposition.

Higher order vn have also been measured at RHIC and the LHC. Measurements of v2, v4

and v6 at the LHC are shown on Figure 2.4b. For almost every particle species and centrality

class, the values of vn are ordered such that vn > vn+1. This is clear from Figure 2.4b where

there is almost an order of magnitude between v2, v4 and v6.

Each anisotropy coefficient vn{. . .} on Figure 2.4b are shown for two or three different

definitions of the momentum anisotropy. These multiple definitions of vn{. . .} are a conse-

quence of the impossibility of measuring directly the vn of a single event, which was defined

in Equation 1.3. Each definition of vn{. . .} has a different mapping to event-averages of the

4 Since v2 is a ratio, the effect of the Jacobian between the rapidity and pseudorapidity seen in the
spectrum largely cancels out.
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single-event Fourier coefficient vn from Equation 1.3. However, unless exotic definitions of

vn{. . .} are used, they all give similar values, typically differing by 10-20%.

In this thesis, charged hadron anisotropies measured with the two-particle cumulant

vn{2} are used as far as possible, to avoid confusion. This definition of vn{. . .} is measured

experimentally as [53, 54]

vexpn {2} =

√〈
〈ein(φ1−φ2)〉particles

〉
events

(2.3)

where the inner brackets represent an average over all particles of interests (e.g. charged

hadrons) within an event, and the outer brackets are an average over events in a given

centrality class. The two-particle cumulant is also called the “scalar product (SP) method”;

vexpn {2} and vexpn {SP} are used interchangeably in this thesis.

For charged hadrons, vn{2} can be computed theoretically from the single-event vn given

by Equation 1.3 as [54]

vthn {2} =
√
〈(vn)2〉events (2.4)

where the average over events is made in the appropriate centrality class.

This closes this short overview of hadronic observables in heavy ion collisions. Photonic

observables are reviewed in the next section.

2.3 Photons

Most photons measured in heavy ion collisions originate from hadronic decays. These photons

carry essentially the same information as hadrons themselves. Since the latter are often easier

to measure, hadronic decay photons are not of primary interest to investigate the properties

of the quark-gluon plasma. Direct photons, which is the photon signal remaining after

subtracting the dominant hadronic decays, are much more interesting.

As seen in the introduction, two major contributions to direct photons are thermal and

prompt photons. Thermal photons are of interest for the information they provide about

the local state of the QGP at the moment of their emission. Prompt photons carry less

information about the medium than thermal ones, but are not insensitive to it either, as

explained below.

A short summary of prompt, thermal and other possible sources of direct photons is

provided in what follows.
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2.3.1 Prompt photons

As explained in the introduction, photons can be produced by the hard scattering of par-

tons from each colliding nuclei. This process can be calculated in perturbative QCD from

Equation 1.1. More precisely, photons can be produced by two different channels in such

reactions5. The first one is through fragmentation, just like hadrons:

E
d3σpp
dp

=
∑
a,b,c,d

fa/p(xa)⊗ fb/p(xb)⊗ dσ̂ ⊗Dγ/c(zc) (2.5)

where parton “c” has a probability of producing a photon of momentum pγT = zcpc as it frag-

ments. This probability is given by the non-perturbative fragmentation function Dγ/c(zc).

Photons can also be produced without going through a fragmentation process, a channel

that will be referred to as “isolated photons” in this thesis6:

E
d3σpp
dp

=
∑
a,b,d

fa/p(xa)⊗ fb/p(xb)⊗ dσ̂ (2.6)

where parton “c” is replaced by a photon. Consequently dσ̂ describes the process ab → γd

where a, b and d are partons. The leading processes are Compton scattering gq → γq and

quark-antiquark annihilation qq̄ → γg.

Isolated photons dominate the prompt photon signal at high pT , while fragmentation

photons are dominant at low pT . This is shown on Figure 2.5a for proton-proton collisions

at RHIC. Isolated photons are the largest contribution to prompt photons above pT ∼
4 GeV, with fragmentation photons taking over below that. Since low pT direct photon

measurements are not available yet for proton-proton collisions at the LHC, the contribution

of isolated and fragmentation photons is shown for Pb-Pb collisions instead. For such nucleus-

nucleus collisions, perturbative QCD needs to be supplemented with binary scaling — the

assumption that as far as prompt photon production is concerned, nucleus-nucleus collisions

5Once final states with more than two particles are taken into account, the division of prompt photons
into two fully distinct production channels becomes ambiguous. This subtlety is not of primary importance
for the discussion presented in this section, but will be addressed again in Section 5.2.1 when perturbative
QCD is explained in greater details.

6 The nomenclature used to describe the different photon production channels in heavy ion collisions is
far from uniform and can bring its share of confusion. The term “isolated photons” suggested in Ref. [55]
for processes such as Compton scattering and quark-antiquark annihilation is used in this thesis. It is not a
perfect choice since it can be confused with isolated photon measurements, which are photon measurements
that suppress background photons through an isolation criteria. Since such isolated photon measurements
are not used in this thesis outside of this section, there should not be any confusion on the meaning of
“isolated”.
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Figure 2.5: (a) Contribution of the isolated and fragmentation channels to prompt photons,
as computed with next-to-leading order perturbative QCD in p-p collisions at

√
sNN =

200 GeV, compared with direct photon measurements from the PHENIX collaboration (data
from [20]) (b) perturbative QCD calculations of prompt photons in Pb-Pb collisions at√
sNN = 2.76 TeV, scaled by the number of binary collisions and compared with preliminary

measurements of direct photons from the ALICE collaboration ( data from [17])

behave as an incoherent sum of proton-proton collisions. Using binary scaling7, prompt

photons and their contribution from isolated and fragmentation photons can be evaluated

and compared with Pb-Pb measurements, shown on Figure 2.5b. At low pT , fragmentation

photons are by far the largest contribution to prompt photons at the LHC, dominating over

the entire range of pT shown. Only at pT ∼ 15 GeV does the isolated photon component

overtake the fragmentation one.

It is clear from Figure 2.5b that binary scaling and perturbative QCD can describe direct

photon measurements in heavy ion collisions very well above pT ∼ 4 GeV. Below pT ∼ 4 GeV

the large excess of photons that is the main topic of this thesis is clearly visible.

There is much support for the validity of binary scaling in proton-nucleus and nucleus-

nucleus collisions, independent of the validity of perturbative QCD calculations. A good

example is the measurement of direct photons in deuteron-gold collisions at RHIC, shown

on Figure 2.6 together with direct photons from proton-proton collisions. As can be seen on

the figure, direct photons from deuteron-gold collisions are very well described by normalizing

7 The normalisation factor used here is 12.8 mb−1, as computed in the Glauber model using an inelastic
nucleon-nucleon cross-section of 64 mb. This corresponds to a superposition of ∼ 819 nucleon-nucleon
collisions.
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Figure 2.6: Direct photon production in proton-proton and deuteron-gold collisions at RHIC
(adapted from [20])

a fit of the proton-proton measurement with the number of binary collisions evaluated from

the Glauber model [22]. There are thus no signs of any deviation from binary scaling, nor

of any significant source of photons beside prompt ones in deuteron-gold collisions8.

One possibility that has not yet been widely investigated is that prompt photons could be

considerably affected by parton energy loss due to interactions with the quark-gluon plasma.

This effect was explained in the introduction (Section 1.3) in the context of hadronic energy

loss in central heavy ion collisions. While isolated photons are not expected to suffer any

significant energy loss, fragmentation photons should be affected by partonic energy loss to a

level similar to hadrons (see e.g. [57, 58, 59]). Remembering that fragmentation photons are

the dominant source of prompt photons at low pT (Figure 2.5), this could change considerably

the contribution of prompt photons at low pT in heavy ion collisions.

Moreover partonic interactions with the QGP do not only result in an energy loss for par-

tons, but also in the production of additional photons. These photons are called “jet-medium

photons”, and are expected to partially counterbalance for the reduction in photons due to

parton energy loss. The actual level of compensation can only be accurately determined by

simulations including both effects consistently. Preliminary work in this direction was made

in Refs. [57, 58].

Both jet-medium photons and fragmentation photons affected by energy loss are ex-

8 A small thermal signal was predicted in Ref. [56] for deuteron-gold collisions. Considerably smaller
uncertainties are still required on the direct photon spectrum in deuteron-gold collisions before this prediction
can be confirmed or refuted.
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pected to have a momentum anisotropy. Each source’s anisotropy is expected to be of

opposite sign: the more medium is encountered in a given direction, the larger the energy

loss of fragmentation photons, and the more jet-medium photons produced as well. The

momentum anisotropies of the two sources have been found to largely cancel out in previous

calculations [58]. More work will be necessary to determine if this finding can be confirmed

from other approaches. Low pT measurements of direct photons in heavy ion collisions using

isolation techniques to reduce the contribution of fragmentation and jet-medium photons

could also provide useful complementary experimental constraints on the prompt photon

contribution [60].

2.3.2 Thermal photons

Thermal photons are photons emitted by the quark-gluon plasma during its short lifetime.

Two significant observations make them prime candidates for the direct photon excess ob-

served in heavy ion collisions. The first one is the shape of the direct photon spectrum at low

pT , which is exponential, in agreement with a signal dominated by thermal photons. This is

a consequence of photon emission rates from the quark-gluon plasma being approximately

exponential in pT as well.

Another important lead on the origin of the direct photon excess is the large momentum

anisotropy of low pT direct photons. This momentum anisotropy is of the same magnitude as

that of pions, which suggests that this direct photon v2 is produced by a mechanism similar

to that producing the hadronic anisotropy: the imprint of the anisotropic hydrodynamical

flow on the produced particles, hadrons or photons.

Both observations hint that the direct photon excess originates from thermal photons,

which is the reason behind the significant efforts put into quantifying precisely their contri-

bution.

2.3.3 Other sources

Other sources of direct photons have been suggested in heavy ion collisions over the years.

Two prominent examples are the production of photons from the strong magnetic fields gen-

erated in heavy ion collisions, suggested as a significant source of momentum anisotropy [61],

and the possibility of significant photon production from the pre-thermal phase of the colli-

sions [62].

Photons originating from such sources can have very clear signatures. For example, the

photon source proposed in Ref. [61] predicts a large contribution to v2 but a much smaller

one to v3. Seeing such a signature (e.g. a large v2/v3 ratio) directly from measurements

28



would require this specific source of direct photons to be the dominant one, much larger

than e.g. thermal photons.

A more likely scenario is that alternative photon sources contribute to direct photons

alongside more traditional sources (thermal and prompt). In this case, comparisons with

measurements must be made by evaluating these new photon sources in frameworks where

prompt, thermal and new photon sources can be investigated concurrently and consistently.

This has not been done yet.
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Chapter 3

Hydrodynamical modelling of heavy

ion collisions

Hydrodynamics is at the core of the present understanding of the quark-gluon plasma formed

in heavy ion collisions. While it is the central element of hydrodynamical models, it cannot

describe the entire spacetime evolution of heavy ion collisions, and must thus be comple-

mented by other models. As seen in Section 1.2 and illustrated on Figure 1.3a, the hydro-

dynamical evolution of the QGP is preceded by a thermalisation phase. From a theoretical

point of view, the result of this thermalisation process determines the boundary conditions

of the hydrodynamics equations.

Similarly, as the hydrodynamical evolution proceeds, the medium’s temperature and en-

ergy decrease. This rarefication of the medium eventually makes it impossible for local ther-

mal equilibrium to be maintained, leading to a breakdown of the hydrodynamical description

of the medium. At this point the medium must be described by a different framework, such

as kinetic theory.

These transitions to and from hydrodynamics are major components of hydrodynami-

cal models of heavy ion collisions. The aim of this chapter is to present each component

and describe how they are related to each other. The first step is to present relativistic

hydrodynamics itself.

3.1 Relativistic hydrodynamics

The symmetries of a complex microscopic system remain valid at macroscopic scales, and

form the basis of any attempt at understanding the system’s long-scale properties. Poincaré

invariance implies the conservation of energy and momentum, which can be written as an
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equation of motion for the energy-momentum tensor T µν of the system [63]:

∂µT
µν(X) = 0 (3.1)

where X is the position 4-vector and ∂µ ≡ ∂/∂Xµ.

Other symmetries such as the baryon number, electric charge and strangeness conserva-

tion are written as

∂µj
µ(X) = 0 (3.2)

where jµ is the current associated with the conserved charge.

As seen in Section 2.2, the net baryon density is negligible at the LHC, implying the

trivial solution jµB ≈ 0 for the baryon current. The same conclusion can be reached for
√
sNN = 200 GeV collisions at RHIC1 from the observation that baryons and antibaryons

have essentially identical multiplicity, spectrum, . . . For the same reasons, electric charge

and strangeness conservation are not considered either. For the present work, it is thus not

necessary to solve the equation of motion given by Equation 3.2.

Equation 3.1 is of limited use if no further assumptions can be made about the underlying

microscopic system. A common assumption in physics is global thermal equilibrium, in which

case thermodynamics can be used to describe the system’s macroscopic properties. In this

case, the properties of the system are quantified with its temperature, pressure, entropy, . . .

When dynamical systems are under consideration, a more realistic assumption than global

equilibrium is “local thermal equilibrium”. It is the hypothesis that every part of the system

can be approximated to be, locally, in a state of thermodynamic equilibrium, with the

assumption that this local equilibrium can be maintained for a certain time as the system

evolves. This assumption forms the basis of hydrodynamics.

A hierarchy of scales is needed in a system for local thermal equilibrium to be a realistic

assumption:

• A microscopic scale at which the relevant microscopic dynamics (e.g. QCD) is at play

• An intermediate scale which is large enough compared to the microscopic one for

thermodynamics to be applicable at this scale

• A macroscopic scale large enough for the intermediate scale to be treated in the con-

tinuous limit

In a system where such a hierarchy exists, and where sufficient separation exists between

the different scales, local thermal equilibrium can be achieved as long as the timescale for

1 For lower energy collisions at RHIC, baryon number conservation can become important. Such collisions
are not investigated in this thesis.
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microscopic interactions is small compared to the timescale over which the macroscopic

system evolves [64, Section 2].

If a system is strictly in local thermal equilibrium, it is described by ideal hydrodynamics.

When local equilibrium is not exact and a medium exhibits small deviations from it, a

generalisation of ideal hydrodynamics must be used: viscous hydrodynamics.

Since most of the intuition about hydrodynamics originates from the ideal case, it is

preferable to present it first.

3.1.1 Ideal relativistic hydrodynamics

The energy momentum tensor of a system in global thermal equilibrium, at rest, is given by

T µν = diag(ε,P ,P ,P) where ε is the energy density and P is the pressure. Boosted in a

frame where the fluid has a 4-velocity2 uµ = (u0,u), T µν takes the form [63]

T µν = (ε+ P)uµuν − Pgµν (3.3)

where uµuµ = 1.

The energy-momentum tensor of a continuous extended system in local thermal equilib-

rium is simply

T µν(X) = [ε(X) + P(X)]uµ(X)uν(X)− P(X)gµν(X) (3.4)

where ε(X) and P(X) are the energy density and pressure of the system at point X, in the

local rest frame of the fluid, and uµ(X) is the velocity of the fluid element at point X. Since

the energy density and the pressure are related by thermodynamics relations, only one of

them is a degree of freedom. Moreover the flow velocity uµ(X) has three degrees of freedom,

since it is a unit vector. The energy-momentum tensor T µν(X) thus have four degrees of

freedom.

The conservation equation 3.1 provides four independent equations that fully constrain

the spacetime evolution of T µν(X). Ideal hydrodynamics can thus be summarized by Equa-

tion 3.1 and 3.4, along with an equation of state relating the pressure to the energy density.

Exact local thermal equilibrium is a strong assumption that closely constrains the space-

time evolution of a system. If the system is close but not fully in local thermal equilibrium,

ideal hydrodynamics is not sufficient to describe its long-scale dynamics. It is nevertheless

possible to extend hydrodynamics to describe such systems, which is the topic of the next

section.

2 A more familiar way of writing the 4-velocity is uµ = (u0,u) = (γ, γv), where γ is the Lorentz factor
and v the velocity.

32



3.1.2 Viscous hydrodynamics

Viscous hydrodynamics is the generalisation of ideal hydrodynamics to systems which deviate

from local equilibrium. For such systems, much of the clarity of the ideal case vanishes. It

is nevertheless possible to formulate hydrodynamical equations to describe systems that are

near but not exactly in local thermal equilibrium, partly based on generalisation of ideal

hydrodynamics, and partly based on other approaches such as kinetic theory.

The first requirement is to define a local rest frame for the different parts of the system,

a frame where thermodynamical relations are well-defined locally. The most common choice

is to select the rest frame with the energy [64, Section 2]:

T µν(X)uν(X) ≡ ε(X)uµ(X); uµuµ = 1 (3.5)

where T µν(X) is the energy-momentum tensor, ε(X) is the energy density and uµ(X) is the

unit flow velocity. The rest frame of a fluid element is obtained by boosting it to a frame

where uµ(X) = (1, 0, 0, 0).

Tensor decomposition can be used to write a generalised version of T µν as [64, Section 2]

T µν(X) = ε(X)uµ(X)uν(X) +
1

3
[Tαα(X)− ε(X)] ∆µν(X) + πµν(X) (3.6)

where ∆µν(X) ≡ gµν−uµ(X)uν(X). At this point, πµν(X) is still an arbitrary tensor defined

so as to possess the following symmetries:

πµν(X) ≡ πνµ(X)

πµν(X)uν(X) ≡ 0

πµµ(X) ≡ 0 (3.7)

The trace Tαα(X) can be rewritten in a more meaningful way by exploiting the knowledge

that, in an equilibrium system at rest

Tαα (eq)(X) = ε(X)− 3P(X) (3.8)

where P(X) is the pressure. One can define a scalar Π(X) such that, in general, Tαα can be

written

Tαα(X) ≡ ε(X)− 3 [P(X) + Π(X)] (3.9)

With this definition for Π(X), the energy-momentum tensor can be written:

T µν(X) = ε(X)uµ(X)uν(X)− [P(X) + Π(X)] ∆µν(X) + πµν(X) (3.10)
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By comparison with the ideal T µν (Eq. 3.4), it is clear that Π(X) and πµν(X) are related

to the deviation of the system from equilibrium. There is however no constraints on their

spacetime evolution at the moment.

Kinetic theory can be used to derive equations of motion for Π(X) and πµν(X). The

rationale is that there exists regimes where both viscous hydrodynamics and kinetic theory

are valid3 [64, Section 4.1]. Once equations for Π(X) and πµν(X) are derived from kinetic

theory, it can be expected that they will hold even when a kinetic theory description of the

medium becomes impossible.

The starting point is the relativistic Boltzmann equation [65]

Kµ∂µf(X,K) = C[f(X,K)] (3.11)

where f(X,K) is the single particle distribution function and C[f(X,K)] is the collision

term.

For a system in thermal equilibrium, f(X,K) = f (0)(K), the Fermi-Dirac or Bose-

Einstein distribution, and both sides of the equation vanish by definition. For a system

close yet not exactly in equilibrium, f(X,K) can be written

f(X,K) = f (0)(K) + δf(X,K) (3.12)

The equilibrium pressure and energy density can be given precise kinetic theory defini-

tions in function of f (0)(K) [65, Section 3], while the Π and πµν can be related to f (0)(K)

and δf(X,K). Given a choice of collision term C[f(X,K)], Equation 3.11 can then be used

to derive equations of motion for Π(X) and πµν(X) in a given approximation scheme.

Kinetic theory has the benefit of allowing for systematic expansion parameters to be

used. The expansion in Knudsen and inverse Reynolds numbers from Ref. [66] forms the

basis of the hydrodynamical model used in this work. The Knudsen number Kn = λ/L

quantifies the ratio of the microscopic mean-free-path λ and a macroscopic length scale L

of the medium, while the inverse Reynolds number compares the contribution of the viscous

part of the energy-momentum tensor to the ideal one through the ratios R−1
Π = |Π|/P and

R−1
π = |πµν |/P [66]. With these definitions, it is possible to find equations of motion for

Π(X) and πµν(X) with contributions up to second order in the Knudsen and inverse Reynolds

3 An example provided in Ref [64, Section 4.1] is that of a weakly-coupled and slowly expanding system:
weak coupling makes a kinetic theory description possible, while the slow expansion allows for local thermal
equilibrium to be maintained despite the weak coupling. The medium produced in heavy ion collisions
appears to be the exact opposite: strong coupling and fast expansion.
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number:

τΠΠ̇ + Π = −ζθ +K +R+ J (3.13)

τπ∆µν
αβπ

αβ + πµν = 2ησµν +Kµν +Rµν + J µν (3.14)

where −ζθ and 2ησµν are the only first order terms. The term K represents contributions

that are second order in the Knudsen number, while R contains second order contributions

in the inverse Reynolds number. Mixed Knudsen/Reynolds terms are in J .

The following definitions were used in Equations 3.13 and 3.14:

θ ≡ ∂µu
µ (3.15)

∆µν
αβ ≡

1

2

(
∆µ
α∆ν

β + ∆µ
β∆ν

α

)
− 1

3
∆µν∆αβ (3.16)

σµν ≡ ∆µν
αβ∂

αuβ (3.17)

The (relativistic) Navier-Stokes equations can be recovered from Equations 3.13 and 3.14

by dropping second order terms (K, R and J , plus the Π̇ and π̇αβ terms on the left-hand-

side). While they are much simpler, the relativistic Navier-Stokes equations are acausal and

prone to numerical instabilities [67] , which is why second order equations are typically used

to describe relativistic systems.

The only first-order transport coefficients are the bulk viscosity ζ and the shear viscosity

η. The K, R and J terms of Equations 3.13 and 3.14 contain a total of 17 terms with the

same number of second order transport coefficients.

All these transport coefficients can in theory be evaluated from kinetic theory, given a

collision kernel C[f(X,K)]. However, the aim of deriving equations for Π and πµν is that

they should hold beyond the regimes of applicability of kinetic theory. In such regimes, the

relation between transport coefficients and C[f(X,K)] does not hold anymore.

Instead, efforts were made to identify the dominant second order terms [68], and to find

relation between the second and first order transport coefficients [69]. This information was

used, along with consideration of numerical stability4 , to restrict the second order terms

included in the hydrodynamical equations used in this thesis to:

Rµν = ϕ7π
λ〈µπ

ν〉
λ (3.18)

4 For example, the term 2τπ∆µν
αβπ

α
λω

βλ, with ωµν ≡ 1
2 (∇µuν −∇νuµ) and ∇µ ≡ ∆µν∂ν , contributes

to J µν . However it has been found to have a small effect on the hydrodynamical simulation, but also to
introduce numerical instabilities in certain cases (the hydrodynamical evolution varies considerably from
event to event due to the fluctuations present in the initial conditions). Consequently it was omitted from
the hydrodynamics equations.
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J = −δΠΠΠθ + λΠππ
µνσµν (3.19)

J µν = −δπππµνθ − τπππλ〈µσ ν〉λ + λπΠΠσµν (3.20)

Coefficients τΠ, δΠΠ, λΠπ, τπ, δππ, τππ and λπΠ are all second-order transport coefficients.

Using relations derived from kinetic theory in [68, 69], they are all related to first order

coefficients:

φ7 =
9

70P
(3.21)

τΠ =
ζ

15
(

1
3
− c2

s

)2
(ε+ P)

(3.22)

δΠΠ =
2

3
τΠ (3.23)

λΠπ =
8

5

(
1

3
− c2

s

)
τΠ (3.24)

τπ =
5η

(ε+ P)
(3.25)

δππ =
4

3
τπ (3.26)

τππ =
10

7
τπ (3.27)

λπΠ =
6

5
(3.28)

(3.29)

where cs is the speed of sound, available through the equation of state.

Owing to their basis in kinetic theory, it is fully understood that these relations may not

hold exactly when the medium being described is a strongly coupled quark-gluon plasma,

which is not expected to have a quasi-particle description necessary for the use of kinetic

theory. On the other hand, it is reasonable to assume that these relations capture the main

dependence of the second order coefficients in terms of first order transport coefficients and

thermodynamical properties.

The hydrodynamical equations used in this work can thus be summarized as

τΠΠ̇ + Π = −ζθ − δΠΠΠθ + λΠππ
µνσµν (3.30)

τπ∆µν
αβπ

αβ + πµν = 2ησµν − δπππµνθ − τππ∆µν
αβπ

λασβλ + λπΠΠσµν + ϕ7∆µν
αβπ

λαπβλ

(3.31)

where ζ and η are the only “free” transport coefficients. Hydrodynamical models of heavy

ion collisions are used precisely to investigate ζ and η by comparison with measurements.
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Effectively, this requires a parametrization for ζ(T ) and η(T ) with a finite number of degrees

of freedom that can be fixed by comparison with data. The parametrizations used in this

work are specified in Chapter 4.

3.1.3 Coordinate system

As seen in Section 2.2, the momentum rapidity distribution of hadrons is approximately flat

around midrapidity, forming an extended plateau. This is interpreted as a consequence of

an approximately uniform energy deposition in spatial rapidity η around the collision vertex

(η = z = 0). It is thus advantageous to use coordinates for which this symmetry can be

made explicit. These coordinates are hyperbolic coordinates (τ, x, y, η):

τ ≡
√
t2 − z2 (3.32)

tanh(η) ≡ z

t
(3.33)

and x and y are regular Cartesian coordinates in the transverse plane.

Particles produced at midrapidity originate mainly from the region z = η ≈ 0 of the

medium. If midrapidity observables are the only ones investigated with the model, it is

often enough to assume an infinite plateau in η and forget about the fall-off of the plateau at

larger η. In this case the hydrodynamical equations can be reduced from 3 + 1D [(τ, x, y, η)]

to 2 + 1D [(τ, x, y)], which allows for a considerable gain of computational efficiency.

Since the observables investigated in this thesis are indeed limited to midrapidity observ-

ables, 2 + 1D hydrodynamics is used in this work.

3.1.4 Solving viscous hydrodynamics

Solving viscous hydrodynamics implies solving Equations 3.1, 3.5, 3.30 and 3.31 given an

equation of state that relates the different thermodynamic quantities of the medium. Viscous

hydrodynamics must be solved numerically using a scheme robust enough to handle the large

gradients found in heavy ion collisions.

For this thesis, the code MUSIC [70, 28] is used to solve Equations 3.1, 3.5, 3.30 and 3.31

using the Kurganov-Tadmor algorithm [71]. While it can solve the full 3 + 1D equations in

(τ, x, y, η) coordinates, the code is used in 2 + 1D in the present work, as discussed above.

The code MUSIC includes routines to initialize the hydrodynamics equation with realistic

initial conditions for heavy ion collisions. These initial conditions are the subject of the next

section.
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3.2 Initial state

It is understood that an “early time” or “pre-equilibrium” phase precedes the establishment

of near local thermal equilibrium in the quark-gluon plasma produced in heavy ion collisions.

Understanding the early time dynamics of heavy ion collisions is a challenge, in particular

the mechanisms through which rapid thermalisation of colored matter is achieved. Although

much progress has been made over the past decades [72] the initial conditions of hydrody-

namical simulations of heavy ion collisions cannot yet be determined from first principles.

This makes initial conditions one of the biggest source of uncertainty in hydrodynamical

models.

Various approaches have been used historically to model the state of the quark-gluon

plasma at the moment that thermalisation is achieved, without attempting to describe the

thermalisation process itself. These attempts focused on the energy distribution in the trans-

verse plane only, since the first hydrodynamical models were ideal and 2 + 1D. The Glauber

model [22], which describes the distribution of nucleon-nucleon collisions in a nucleus-nucleus

collision, is still widely used. Energy is deposited in the transverse plane at the position of

the nucleon-nucleon collisions, providing an energy density profile to initialise the hydrody-

namics equations. The Glauber model does not provide information about uµ(X0), Π(X0)

and πµν(X0), which must be modelled otherwise. Here X0 is the coordinate on the 3D hy-

persurface where the initial conditions of the hydrodynamics equations are specified. This

hypersurface is usually chosen to be the “time” τ = τ0, with τ0 ∼ 0.1− 1 fm.

No two heavy ion collisions are identical, and the Glauber model partially take this

physics into account through fluctuations in the positions of the nucleon-nucleon collisions.

These fluctuations are important in determining the geometry of the initial conditions of

hydrodynamics.

An important consequence of these fluctuations is that a full hydrodynamical simulation

of each sample of initial conditions is necessary. This approach is called “event-by-event

hydrodynamics”. For many years, event-by-event hydrodynamics was not used, due to both

its numerical cost and the incomplete understanding of the importance of fluctuations in the

initial conditions. Instead, averaged initial conditions were used: numerous samples of the

initial conditions were averaged over, and a single hydrodynamical simulation of the collision

would be made with this averaged initial condition.

It is now understood that hydrodynamical models using averaged initial conditions can

provide a reasonable approximation of event-by-event hydrodynamics for a subset of ob-

servables, in particular observables that are not very dependent on the smaller features of

initial conditions. The multiplicity is a good example of such observables. The momentum

38



anisotropies, on the other hand, are highly sensitive to fluctuations and cannot be described

well with averaged hydrodynamics. Since the momentum anisotropy of hadrons and photons

are of primary interest in this thesis, event-by-event hydrodynamics is used throughout the

present work.

Hydrodynamical models using initial conditions based on the Glauber model were shown

(e.g. [28]) to be quite successful in describing measurements from RHIC and the LHC. On the

other hand, they contain free parameters that weaken the predictive power of hydrodynamical

models. This is a consequence of the limited information provided by the Glauber model,

which only models the position of nucleon-nucleon collisions in the heavy ion collisions.

The amount of energy deposited at each site and the shape of this energy deposition are

parameters of the model which must be tuned to data. Moreover the Glauber model does

not provide any information about the initial conditions of uµ(X0), Π(X0) and πµν(X0),

which must be fixed from other models. This is an even larger source of uncertainties in the

initial conditions.

These limitations provided strong incentives for the development of new models of initial

conditions that include more information from quantum chromodynamics and less free pa-

rameters. A major contribution to this effort came from the Color Glass Condensate model.

This model is based on the idea that large nuclei accelerated at nearly the velocity of light

have a very large density of soft gluons. Because of this high gluon density, a classical de-

scription of the gluon field is possible, allowing for the gluon distribution to be estimated

from first principles [73]. The model of initial conditions used in the present thesis is based

on this approach.

The source of this high density of soft gluons are large momentum colour charge carriers,

such as hard gluons and valence quarks, that act as static colour sources in each nucleus [72].

Different models can be used to constrain the distribution of colour sources, which fluctuates

not only at the level of the nucleus but at sub-nucleonic scales. Once the colour sources are

constrained, the distribution of gluons and its evolution in space and time is described with

the classical Yang-Mills equation:

[Dµ, F
µν ] = Jν (3.34)

where Dµ is the covariant derivative, F µν the gluon field strength tensor and Jν the colour

current given by the colour sources.

This model is called the IP-Glasma model [74, 75], and it is the specific model of heavy

ion initial conditions used for all results presented in this thesis. It takes its name from

the “impact parameter dependent saturation model” (IP-Sat), which is a version of the

Color Glass Condensate model that constrains the distribution of initial colour sources from

electron-proton and electron-nucleus collisions. An example of colour source distribution is
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(a) (b)

Figure 3.1: (a) Illustration of the density of colour charges in each nucleus before the collision,
with red representing higher colour charge densities (b) Example of energy density profile in
the transverse plane from the IP-Glasma model (Figures from [75])

shown on Figure 3.1a.

The best possible scenario when initial condition models such as IP-Glasma are used is for

the evolution described by Equation 3.34 to show signs of thermalisation. This would make

possible a smooth transition to hydrodynamics. Unfortunately the framework described

above does not show signs of thermalisation. There are nevertheless indications that a more

complete treatment of the initial colour sources and of the Yang-Mills evolution do lead to

certain features associated with thermalisation [76]. The use of IP-Glasma initial conditions

does appear to be a first step toward more realistic initial conditions.

While the full energy-momentum tensor of the Yang-Mills evolution is known, the major

consequence of the absence of thermalisation is that this energy-momentum tensor is too

far out-of-equilibrium to be matched directly to the hydrodynamical model. For example,

the value of Πµν will not necessarily be small compared to the energy density itself. Rather

than matching this out-of-equilibrium energy-momentum tensor to hydrodynamics, only the

energy density and the flow velocities from the Yang-Mills evolution are matched. This is

achieved by solving:

uµ(X0)T µνCYM(X0) = ε(X0)uν(X0) (3.35)

where T µνCYM is the classical Yang-Mills energy-momentum tensor. In the present work,

X0 = τ0 = 0.4 fm.

Since the energy and momentum are not fully conserved in this transition, the final exact

normalisation of ε(τ0) is considered an adjustable parameter, with the assumption that this

normalisation should nevertheless not deviate too much from unity. Normalisations around

1.2 are used in this thesis.

While the IP-Glasma model cannot yet constrain the full initial conditions, it can con-

strain the two quantities that are the most important for the subsequent evolution, ε(τ0) and
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uµ(τ0), with very few parameters. This is a major step forward in reducing the uncertainties

associated with initial conditions.

Once the initial conditions of the hydrodynamics equations are fixed, hydrodynamics

evolution follows its course. An important input to the hydrodynamical equation is the

equation of state, which is presented next.

3.3 Equation of state

The equation of state is used to relate the various thermodynamical quantities entering the

hydrodynamical equations. The energy density ε, the pressure P and the entropy density s

typically appear as thermodynamical variables in the viscous hydrodynamics equations or in

relations between the transport coefficients, while the temperature T enters the Fermi-Dirac

or Bose-Einstein distribution when particle production from the medium is evaluated.

As mentioned in the introduction, the equation of state of QCD matter at zero baryon

density is known to a quantitative level, to the point that it is probably the best constrained

part of the model. This understanding of thermal QCD was made possible by lattice QCD

simulations. After years of progress, lattice QCD predictions are now understood to provide

an accurate prediction for the thermodynamical properties of QCD matter, for temperatures

as low as 125 MeV and as high as 1 GeV [10].

Moreover lattice results have been shown to agree well, at low temperature, with the

thermodynamical properties of a non-interacting gas of hadrons and hadronic resonances —

referred to as a “hadron resonance gas” — which is understood to be an effective model for

an interacting gas of hadrons. This was illustrated on Figure 1.2a. This agreement between

lattice calculations and the hadron resonance gas is not only numerical: it can actually be

shown from first principles that the pressure of a thermalised QCD medium can be written,

at low temperature, in terms of the pressure of a free gas of hadronic degrees of freedom [10,

Section 3.12]. The equation of state is thus not only quantified accurately, but its connections

to effective descriptions of QCD matter at low temperature are increasingly well understood.

The equation of state used in the present thesis is from Ref. [77]. It is based on lattice

QCD calculations at high temperature matched to a hadron resonance gas at low tempera-

ture. The matching is important for two reasons. First it allows to extend the equation of

state to temperatures lower than that available from lattice QCD.

The second reason is that it permits the conversion of a thermal QCD medium into

hadronic degrees of freedom without loss of energy. This conversion needs to be done in

hydrodynamical modelling of heavy ion collisions when the medium becomes too diluted for

a hydrodynamical description to be valid anymore. The medium must then be converted to
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hadrons and a different model must be used for their evolution. This process is explained in

the next section.

3.4 Particlisation and afterburners

Hydrodynamics will describe the spacetime evolution of a medium as long as the latter can

maintain near local thermal equilibrium. The conditions under which local equilibrium can

be preserved depend on the microscopic properties of the medium being described. For a

system that allows for a quasi-particle description, this condition is typically that the quasi-

particle’s mean free path is much smaller than any of the macroscopic length scales of the

medium.

In the region of spacetime where hydrodynamics is not valid, typically at the edge of the

medium or after expansion has sufficiently rarefied it, a different approach should be used

to model the medium, with the appropriate matching to the hydrodynamical simulation [78,

Section 5]. This very complex approach is still not mature enough to be used practically

in heavy ion collisions. The scheme used in essentially all hydrodynamical models at the

moment is a more pragmatic one, which can be divided in three steps:

Particlisation criterion First, a criterion is chosen to determine when the hydrody-

namics description should be stopped for a given spacetime region of the medium, based on

the local properties of this part of the medium. This process is referred to as “particlisa-

tion” [79].

The medium’s local temperature is commonly used as a criterion. The idea behind

this choice is that the local mean-free-path is expected to be a monotonic function of the

temperature (the higher the temperature, the smaller the mean-free-path). It implies that the

temperature can be used as proxy for the mean-free-path, which determines if local thermal

equilibrium can be maintained in the medium. In this case, the particlisation criterion is

simply T = Tsw, where Tsw is a parameter of the hydrodynamical model that is fitted to

data.

Viscous hydrodynamical models allow for more realistic particlisation criteria to judge

the validity of the hydrodynamical description, by comparing microscopic length scales given

by transport coefficients with macroscopic scales. While such criteria are increasingly being

investigated [80, 81], they are not yet common in the field. Temperature is used in the

present work.
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Particlisation The second step relies on the fact that the thermodynamical properties

of QCD matter at low temperature can be described in terms of a hadron resonance gas,

as seen for the equation of state in the previous section. Once it is established that a

hydrodynamical description is no longer applicable in a given spacetime region, the energy

of this part of the medium is converted into hadrons and resonances. This requires the

assumption that Tsw is below the confinement limit of QCD matter, which is one of the

reasons why it is simpler to use temperature directly as particlisation criterion. Since there

is no precise temperature delimiting confined and deconfined QCD matter, the point from

which the thermodynamical properties of the hadron resonance gas matches that of lattice

QCD can be used. From Figure 1.2a, this temperature can be read to be around 180 MeV.

The 3D spacetime surface that meets the particlisation criterion at any given point in the

hydrodynamical evolution is called the “particlisation hypersurface”5. Particlisation is ac-

complished by evaluating the number of hadrons of each species that cross this hypersurface.

The particlisation process is done locally and hadrons are given a (quasi-)thermal distribu-

tion of energy and momentum according to the temperature Tsw and boosted given to the

local flow velocity of the medium. This is referred to as the Cooper-Frye procedure [82], and

its mathematical formulation is [83, Section 3.2.4]

E
d3N

dp
=

∫
Σ

dΣµP
µf(P · u,X) (3.36)

where dΣ0 = d3r and dΣ = dτd2sn with n a unit vector normal to the hypersurface and

d2s the local area of the hypersurface. Energy is conserved in this process if all hadrons and

resonances entering in the equation of state are produced through Equation 3.36.

Since viscous hydrodynamics is used, the medium is not exactly thermal, which implies

that fB/F (P,X) is not the Fermi-Dirac (f
(0)
F ) or Bose-Einstein (f

(0)
B ) distribution, but in-

cludes corrections related to the bulk pressure Π and the shear stress tensor πµν . The exact

expression for f is determined in kinetic theory, in the same way that the equations of

motions for Π and πµν were derived [64, Section 5.3].

In the present work, fB/F (P,X) is given by

fB/F (P,X) = f
(0)
B/F (P ) + δf shearB/F (P,X) + δf bulkB/F (P,X) (3.37)

where

δf shearB/F (P,X) = f
(0)
B/F (P )(1 + σB/Ff

(0)(P ))
πµνP µP ν

2T 2(ε+ P)
(3.38)

5 When boost-invariant 2+1D hydrodynamical models are used, this particlisation hypersurface is effec-
tively two-dimensional. The rapidity direction is infinite but trivial: the hypersurface is uniform in rapidity.
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and [84]

δf bulkB/F (P,X) = −f (0)
B/F (P )(1 + σB/Ff

(0)(P ))

[
1

3

m2

T 2

1

P 0/T
− P 0

T

(
1

3
− c2

s

)]
Π
τΠ

ζ
(3.39)

with σB = 1 for fermions and σF = −1 for fermions.

Rather than using the approximate relation given by Equation 3.22 to evaluate the ratio

τΠ/ζ in Equation 3.39, it is evaluated directly — as a function of temperature — using a

kinetic theory model of the hadron resonance gas [84]. The speed of sound cs is taken from

the equation of state.

The hydrodynamical simulation of the medium and the conversion to hadrons through

Cooper-Frye continues until the whole medium has been converted to hadrons.

Afterburner: post-particlisation dynamics By definition, particlisation converts

the medium into a gas of interacting hadrons. Although the hadronic interactions could not

maintain local thermal equilibrium, they can still affect the distribution of final state hadrons

significantly. Elastic collisions modify the hadron’s energy-momentum distribution, while

inelastic collisions change the relative abundances of each hadron species. Both interactions

can be modelled using kinetic theory. In the context of heavy ion collisions, a model that

describes such interactions is usually referred to as an afterburner.

Since most produced hadrons and resonances are unstable, they decay into daughter

hadrons before reaching the detectors that surround the collision region. Once again this

modifies the species and momentum distribution of hadrons. This must also be taken into

account before the final distribution of hadrons can be compared with measurements.

In the present work, the transport model UrQMD (Ultra-relativistic Quantum Molecular

Dynamics) [85, 86, 87] is used as afterburner. UrQMD is a microscopic model that solves

the Boltzmann equation with hadronic degrees of freedom. Hadrons and resonances up to

2.25 GeV in mass are included in the model, with their cross-sections being parametrized

from measurements when possible. Hadronic cross-section models are used to estimate those

that have not been measured [86].

While UrQMD describes interactions between hadrons in 3+1 dimensions, it is effectively

possible to use it in 2 + 1 dimensions for boost-invariant systems by initialising it with a

wide plateau in rapidity.

In the next chapter, hadronic observables are computed with the hydrodynamical model

of heavy ion collisions described in the present chapter. The relative importance of rescat-

tering and decays on the various observables is briefly investigated.
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Part III

Hadrons
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Hadronic measurements are the most diverse and precise of any measurements made

in heavy ion collisions. They are consequently the first used to constrain hydrodynamical

models of heavy ion and extract information on the transport properties of the quark-gluon

plasma.

In this section, the hydrodynamical model of heavy ion collisions described in Chapter 3

is used to compute hadronic observables measured at RHIC and the LHC. The purpose of

this chapter is to show that the state-of-the-art hydrodynamical model used in this thesis can

describe very well the major hadronic measurements at RHIC and the LHC. The role of bulk

viscosity is highlighted, and along with the importance of final state hadronic rescattering.

This comparison with hadronic observables is the first step in this thesis. Calculations of

photons from the same hydrodynamical model are presented in the final part of this thesis.
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Chapter 4

Hadron production in a

comprehensive hydrodynamical model

of heavy ion collisions

Calculations of hadronic observables for collisions of lead ions (Pb-Pb) at a center-of-mass

energy of
√
sNN = 2.76 TeV are presented first in this Chapter. After a systematic compar-

ison with measurements from the LHC, these calculations are used to understand the effect

of bulk viscosity and of post-particlisation hadronic rescattering on hadronic observables,

and the consequence for the hydrodynamical model.

Comparisons with data from RHIC are deferred to the final part of this chapter. To open

the chapter, a summary of the hydrodynamical model of heavy ion collisions described in

Chapter 3 is provided, with additional information specific to the results presented in this

work.

4.1 Summary of the model

The hydrodynamical model of heavy ion collisions used in this work is made of three main

parts: initial conditions, hydrodynamical equations for the spacetime evolution, and a par-

ticlisation procedure coupled with post-particlisation dynamics.

The IP-Glasma initial condition model described in Section 3.2 is used for all calculations.

It provides an initial energy density profile, as well as an initial profile for the flow velocity. As

explained in Section 3.2, the energy density normalisation of the IP-Glasma initial conditions

is not fully constrained, and small modifications to the normalisation are possible. This

normalisation factor is one of the parameters of the model.
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Figure 4.1: Parametrization of bulk viscosity ζ(T ) used in this work (parametrization and
figure from [88])

Since initialisation for the shear stress tensor πµν or for the bulk pressure Π are not

currently available from IP-Glasma initial conditions, a choice must be made to fix them.

They are set to zero in the present work.

This thesis focuses on midrapidity hadronic measurements. In consequence 2 + 1D hy-

drodynamical equations are used.

Event-by-event hydrodynamics is used in order to include the fluctuations necessary

to describe the azimuthal anisotropy of hadrons. As described in Section 3.1, second order

hydrodynamics is used, with all transport coefficients related to the shear and bulk viscosities

using relations derived from kinetic theory (see Section 3.1).

Shear viscosity η is assumed to be proportional to the entropy density s, η/s = h with

the constant h being a parameter of the hydrodynamical model that is extracted from data.

For bulk viscosity, the temperature-dependent parametrization proposed in Ref. [88] is

used. This parametrization, plotted on Figure 4.1 as a ratio of bulk viscosity and entropy

density, has a peak in ζ/s at temperature T = 180 MeV. Below 180 MeV, the temperature

dependence of ζ/s is estimated from the bulk viscosity of a hadron resonance gas with

Hagedorn states [89], while values of the bulk viscosity estimated [90] from lattice QCD

simulations are used to constrain ζ/s above 180 MeV.

At temperature Tsw, the particlisation procedure described in Section 3.4 is used. The

kinetic model UrQMD is then used to describe hadronic interactions. The parameter Tsw is

the third parameter of the hydrodynamical model, which is fixed by comparison with data.

Before turning to comparisons with LHC measurements, a short summary of the hadronic

observables studied in this work is presented.
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4.2 Hadronic observables

The following observables are computed and compared with data in this chapter:

• Centrality dependence of pion, kaon and proton multiplicity

• Centrality dependence of pion, kaon and proton average transverse momentum

• Centrality dependence of v2, v3 and v4 for unidentified charged hadrons

• Transverse momentum differential spectra of pions, kaons and protons

• Transverse momentum differential v2, v3 and v4 of unidentified charged hadrons

The centrality dependence is shown using four different centralities: 0-5%, 10-20%, 20-

30% and 30-40%. Transverse momentum differential spectra and anisotropies are shown for

the first and last of these centralities.

A slightly different set of observables and centralities are shown for RHIC measurements,

due to the unavailability of certain data sets.

4.3 Comparisons with LHC measurements: Pb-Pb col-

lisions at
√
sNN = 2760 GeV

Comparison of the hydrodynamical model summarized in Section 4.1 with the hadronic

observables listed in the previous section is shown on Figure 4.2. The centrality dependence

of the multiplicity, average pT and pT -integrated vn are shown on Figures 4.2a, 4.2b and 4.2c

respectively. Data are taken from Ref. [50] for the multiplicity and average pT , and from

Ref. [91] for the integrated vn.

All three measurements can be described well by the hydrodynamical model’s prediction,

once the model’s parameters are fixed. The energy normalisation of the initial conditions

is fixed with the pion multiplicity. The centrality dependence of the multiplicy, which is a

prediction of the model, is in very good agreement with the data.

The temperature hypersurface at which hydrodynamics stops and hadronic rescatterings

start is fixed at Tsw = 145 MeV, as it provides the best description of the proton multiplicity

and average pT . While the centrality dependence of the kaon and proton average pT de-

viates slightly from measurements, their description by the hydrodynamical model remains

reasonable.

Unlike the multiplicity and average pT , the integrated vn shown on Figure 4.2c are highly

sensitive to the shear viscosity η, and are used to extract the shear viscosity of the model,
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Figure 4.2: Comparison of hydrodynamical model with hadronic (a) multiplicity, (b) average-
pT and (c) pT -integrated vn with respect to centrality; pT -differential hadron spectra for (d)
0-5% centraliy and (e) 30-40% centrality; and charged hadrons pT -differential v2, v3 and v4

for (f) 0-5% centraliy and (g) 30-40% centrality, all for Pb-Pb collisions at
√
sNN = 2.76 TeV.

The shaded band around the hydrodynamical calculation are statistical uncertainty of the
average over events.
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η/s = 0.095. This value provides a fairly good description of the v2, v3 and v4 for all

centralities.

The differential spectra shown on Figures 4.2d and 4.2e confirm that, as hinted by the

good agreement of the multiplicity and average pT , the momentum distribution of hadrons

is very well described by the hydrodynamical model, in particular for 0-5% centrality. Mea-

surements were taken from Ref. [50].

The transverse momentum dependence of the charged hadron’s vn, Figures 4.2f and 4.2g,

is compared with measurements from both ALICE [91] and CMS [92]. This differential vn

definitively shows tension between the calculation and measurements, both at low and high

pT . For v2, however, it is not clear how serious this tension is at high pT , since ALICE

and CMS measurements disagree in this region. The origin of the disagreement between the

hydrodynamical model and the measurements at low pT is not understood yet. The pion

spectra also exhibit a small disagreement with measurements at very low pT (see Figures 4.2d

and 4.2e), and both effects might be related.

Like the pT -integrated vn, the differential vn also has a strong dependence on the shear

viscosity η. The tension observed on Figures 4.2f and 4.2g could be reduced by modifying

the value of η/s. On the other hand, integrated observables are more robust observables

than differential ones — much less dependent on δfB/F (Equation 3.37) for example — and

the value of η/s extracted from pT -integrated vn is considered more reliable.

The overall agreement of the hydrodynamical model with measurements from the LHC

is good, in particular considering the limited number of free parameters in the model and

the large number of observables described. This degree of agreement would not have been

possible without two important ingredients of this model: the introduction of bulk viscosity,

and the improved description of final state dynamics provided by the UrQMD afterburner.

The importance of each is shown separately in the next two sections.

4.3.1 Effect of bulk viscosity

The introduction of bulk viscosity is essential to achieve the description of hadronic observ-

ables presented above. This is shown in the present section by turning off bulk viscosity

altogether, i.e. setting ζ = 0. Such a value of bulk viscosity is not wholly unphysical:

in a nearly conformal system such as a high temperature QGP, ζ should indeed be very

small. However the quark-gluon plasma produced in heavy ion collisions is not a very high

temperature one, and conformal invariance is certainly broken by confinement. As seen in

Section 4.1, there are currently good evidence for a peak of bulk viscosity near deconfine-

ment [89, 90], evidence that were used to constrain the temperature-dependence of the bulk
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Figure 4.3: Effect of bulk viscosity on the same observables as Figure 4.2. Solid line is with
both shear and bulk, dashed line is without bulk.

52



viscosity used in the present work (Figure 4.1).

The effect of setting ζ = 0 on the same observables as presented in the previous section

is shown on Figure 4.3. The solid lines are the same calculation as shown in the previous

section on Figure 4.2, and the dashed lines are the results of the hydrodynamical model with

ζ = 0 instead of the parametrization of Figure 4.1. Data is also shown for reference.

The effect of bulk viscosity on the multiplicity (Figure 4.3a) is visible but moderate.

From a phenomenological point of view, this could be corrected by readjusting the energy

normalisation of the initial conditions to a larger value.

On the other hand, the average pT is shown on Figure 4.3b to have a strong dependence

on bulk viscosity. The introduction of bulk viscosity decreases significantly the average pT

of pions, kaons and protons, and is essential in describing the measurements. The same

conclusion can be reached from the pT differential spectra, Figures 4.3d and 4.3e, which have

an incorrect momentum dependence without bulk viscosity.

The hadronic vn also shows a dependence on bulk viscosity, as seen on Figure 4.3c.

It is nevertheless possible to describe the charged hadron vn measurements without bulk

viscosity by increasing the value of the shear viscosity. This is shown on Figure 4.4: the

pT -integrated vn for a hydrodynamical model with bulk viscosity given by Figure 4.1 and

η/s = 0.095 is almost the same as for a hydrodynamical models with ζ = 0 and η/s = 0.16.

Since the shear viscosity of the quark-gluon plasma is primarily extracted from hadronic vn

measurements, the presence of bulk viscosity has a significant effect on its determination. The

latter conclusion is important, because studying and quantifying the transport properties of

QCD is one of the important goals pursued in heavy ion physics.

It is thus clear that for the hydrodynamical model used in this work, the inclusion of

bulk viscosity allows for a better description of LHC data. Considering that the present

hydrodynamical model, with IP-Glasma initial conditions and final state hadronic dynamics,

is among the most realistic ever used to study heavy ion collisions, it provides strong support

for a finite value of the bulk viscosity of QCD around deconfinement.

4.3.2 Post-particlisation dynamics

The transition from hydrodynamics to hadrons was described in Section 3.4. One impor-

tant feature of this part of the model is the inclusion of a dynamical model of hadronic

rescatterings (UrQMD) after particlisation. This section focuses on the effect of hadronic

rescatterings, and not of post-particlisation hadronic decays. The distinction is made because

hadronic decays do not actually need a complex model of hadronic interaction to be included.

There are actually analytic formulae for most hadronic decays, and their implementation are
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Figure 4.4: Charged hadron vn from a hydrodynamical model with both shear and bulk
viscosity, and η/s = 0.095, compared with the same calculation without bulk viscosity, and
with η/s = 0.16

relatively fast and are consequently used almost universally in the field.

Hadronic rescatterings, on the other hand, require the use of a model of hadronic inter-

actions such as UrQMD. It brings an additional degree of complexity to the hydrodynamical

model, and an additional numerical cost, which makes their inclusion more difficult. There

are thus strong incentives to identify the observables for which the inclusion of hadronic

rescatterings is important.

The results are shown on Figure 4.5. As in the previous section, the comparisons is made

with the same observables as previously shown on Figure 4.2. The solid line is the calculation

with post-particlisation hadronic interactions and hadronic decays (the same calculation as

shown on Figure 4.2). The dashed line includes decays but no collisions.

The first conclusion from Figure 4.5 is that pions and unidentified charged hadrons (which

are dominated by pions) are mostly unaffected by hadronic rescatterings in the final state of

the collision. The exception is the differential vn at high pT (Figures 4.5f and 4.5g), where

the momentum distribution of the vn are clearly modified by rescatterings.

For kaons and protons, hadronic collisions produce an important change in the momentum

distribution. This can be seen clearly in the average transverse momentum (Figure 4.5b)

and in the spectra (Figures 4.5d and 4.5e)

For both high pT differential vn and kaons and proton spectra, it is also clear that most

central events (0 − 5%) are more affected than peripheral ones (30 − 40%). This is in line

with the expectation that most central events produce more hadrons, which makes them

more likely to undergo interactions.
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Figure 4.5: Effect of hadronic rescattering on the same observables as Figure 4.2. Solid line
is with hadronic rescattering, dashed line is without.
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The observation that charged hadrons and pions are mostly insensitive to hadronic rescat-

terings is important. It implies that two of the three parameters in this model, the energy

normalisation and the shear viscosity, do not depend significantly on the details of hadronic

rescatterings. On the other hand, since the particlisation temperature is fixed with the pro-

ton multiplicity and average pT , it is clearly dependent on hadronic rescattering. As will be

seen later, the particlisation temperature is an important parameter for photons. The issue

of hadronic rescattering will thus be raised again in the context of photon production.

4.4 Comparisons with RHIC measurements: Au-Au

collisions at
√
sNN = 200 GeV

After the detailed comparison with hadronic measurements at the LHC made in the previous

chapter, the same hydrodynamical model is compared with measurements from RHIC. The

parameters of the model are fixed to data as in the previous section:

• The normalisation of the IP-Glasma initial conditions is adjusted to obtain a good pion

multiplicity

• The temperature at which the hydrodynamical evolution is stopped is fixed at Tsw =

165 MeV so as to provide the best global description of hadronic measurements, in

particular of the proton and kaon spectra.

• The value of η is fixed to η/s = 0.06 by comparison with the integrated vn of charged

hadrons

The result is shown on Figure 4.6. Data is from Ref. [93] for the multiplicity and average

pT , from Refs [94] and [95] for the integrated v2{2} and v3{2}, and from Refs [96] and [97]

for the hadron spectra.

There are some differences on Figure 4.6 compared to the figures shown in the previous

section. First, only the v2 and v3 is shown on Figure 4.6c due to the unavailability of

v4. Since no pT -differential charged hadron two-cumulant vn{2} are available at RHIC (see

Section 2.2), only the integrated vn is shown.

Moreover, unlike in the preceding section, the proton multiplicity [93] shown on Fig-

ure 4.6a includes protons from weak decays such as Λ → pπ− and Σ+ → pπ0, which are

considered stable in the hydrodynamical model. The proton average pT measurements from

STAR [93] also contain the effect of these weak decays. Multiplicity calculations from the

hydrodynamical model can be and are corrected to include weak decays, but the same is
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Figure 4.6: Comparison of hydrodynamical model with hadronic (a) multiplicity, (b) average-
pT and (c) pT -integrated vn with respect to centrality, pT -differential hadron spectra for (d)
10-20% centraliy and (e) 30-40% centrality, for Au-Au collisions at

√
sNN = 200 GeV. The

shaded band around the hydrodynamical calculation are statistical uncertainties.
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not possible for the average pT without making complex modifications to the afterburner

UrQMD. Consequently the model’s prediction for the proton average pT is not compared to

measurements.

Differential spectra for which weak decays were subtracted were published by both the

PHENIX [96] and STAR [97] collaboration. To compare them, the differential spectra (Fig-

ure 4.6d) is shown for 10−20% instead of 0−5%, since PHENIX and STAR proton data are

only both available for this centrality. It is clear from Figure 4.6d that the hydrodynamical

prediction for the proton spectra deviates significantly from the PHENIX data, but agrees

well with STAR measurements. The agreement with the STAR data is in fact consistent

with the agreements found for the multiplicity on Figure 4.6a. The origin of this discrepancy

between the two data sets has not been identified at the moment.

Beside this subtleties in the proton spectra, the agreement is quite similar to that seen

with LHC data, with very good pion spectra and good pT -integrated vn, but some tension

with the kaons. The overall agreement of the hydrodynamical model is thus also good at

RHIC.

4.5 Hydrodynamical model and hadronic data: sum-

mary

The hydrodynamical model used in this thesis was compared with hadronic measurements

from both RHIC and the LHC. In both case, the model was found to be in good agreement

with data, although some tension is apparent for kaons as well as for the pT -differential vn.

Considering the small number of parameters in the model, the general agreement with data

of its predictions indicates that the hydrodynamical model provides a solid description of

the dynamics of heavy ion collisions.

With this successful hydrodynamical model of heavy ion collisions in hand, the production

of photons is investigated next.
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Part IV

Photons
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Direct photon measurements in heavy ion collisions show a large excess of photons over

the expected prompt photon signal. These photons have also been measured to have a large

momentum anisotropy. Photons emitted by the quark-gluon plasma during its expansion

are prime candidates for this excess of photons.

In this part of the thesis, the hydrodynamical model described in Chapter 3, and com-

pared successfully to hadronic data in the preceding chapter, is used to evaluate thermal

photons and to compare with direct photon measurements from both RHIC and the LHC.
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Chapter 5

Photon sources

As outlined in Section 2.3, photons can be produced through a variety of mechanisms in

heavy ion collisions. This thesis focuses on two of these production mechanisms: thermal

photons and prompt photons. A third source of photons, those from hadronic decays that

are not subtracted in direct photon measurements, is also investigated briefly.

This chapter is meant to explain how each of these sources is evaluated in this thesis.

5.1 Non-cocktail photons

“Non-cocktail photons” are hadronic decays into photons that are not subtracted from in-

clusive photons in the definition of direct photons. The list of decays that are subtracted

in direct photons are taken from Ref. [98, Section 10.1] for LHC measurements and from

Ref.[99, Section 3.5] for RHIC measurements. At both RHIC and the LHC, the dominant

non-cocktail channels are Σ0 → Λγ, f1(1285) → ρ0γ and K∗(892) → Kγ. The channel

π0 → e+e−γ is also an important non-cocktail contribution at RHIC, since unlike in the

LHC analysis, it is not subtracted.

The production of hadrons from the hydrodynamical model was described in Section 3.4

as well as in Chapter 4. With the knowledge of the momentum distributions of each hadron

species, decay photons are evaluated using the appropriate branching ratio for each decay

channel [6].

5.2 Prompt photons

When two relativistic hadrons collide, most of the momenta of their quarks and gluons is

along the collision axis. If two such energetic partons q1 and q2 undergo a 2 → 2 collisions
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q1q2 → q3q4, there is a finite probability that particle q3 will be produced with a significant

momentum pT in the plane transverse to the collision axis, with q4 carrying an opposite

transverse momentum by conservation.

Since q1 and q2 did not have any significant initial transverse momentum, the momentum

exchange between the initial state particles q1 and q2 must have been at least of order pT .

This momentum pT sets the scale at which the strong coupling constant αs(Q) is evaluated

in this process. Because of asymptotic freedom in quantum chromodynamics (Figure 1.1),

the larger pT , the smaller αs.

A small value of αs implies that the cross-section q1q2 → q3q4 can be computed perturba-

tively from QCD. This is the essence of perturbative QCD, and it is the basis for the great

interest of the nuclear and heavy ion physicists with high-pT particles. This mechanism of

photon production is referred to as prompt photons in this thesis.

5.2.1 A review of perturbative QCD in proton-proton collisions

Schematic formulae for the mathematical formulation of perturbative QCD were given pre-

viously in this thesis (see Sections 1.3 and 2.3.1). A more precise formulation is

E
d3σpp
dp

=
∑
a,b,c,d

fa/p(xa, Qfact)⊗ fb/p(xb, Qfact)⊗ dσ̂(Qren)⊗Dγ/c(zc, Qfrag) (5.1)

where Qfact, Qren and Qfrag are energy scales entering respectively the parton distribution

function fa/p(xa, Qfact), the partonic cross-section dσ̂(Qren) and the fragmentation function

Dh/c(zc, Qfrag). The cross-section of the partonic scattering described in the previous section

is dσ̂(Qren), and Qren is the scale at which the strong coupling constant αs(Q) is evaluated.

As explained above, this scale should be of the order of the transverse momentum of final

state partons.

The factorisation and fragmentation scales can be better understood by remembering

that the parton distribution function and fragmentation function encode non-perturbative

information about the collision. The parton distribution function, for example, can be

thought of as representing the probability of a parton “a” with momentum xaP to be found

in a proton of momentum P . However, this probability depends on the scale at which the

proton is probed: the parton content of the proton is dynamic.

This dynamics can be understood with perturbative QCD. Say fa/p(xa, Q0) gives the

parton distribution of a proton at an energy scale Q0. The parton distribution at another

energy scale Q can be evaluated in perturbative QCD1, as long as both Q0 and Q are large

1 This is accomplished with the DGLAP equations. See e.g. [6, Chapter 9 & 19].
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enough for perturbative QCD to be applicable. Assuming that Q0 is the lowest scale at

which this perturbative QCD evolution can trusted, then fa/p(xa, Q0) can be thought of as

the actual function that needs to be extracted from data, since the information it contains is

no longer perturbative. It can be used as a reference parton distribution function, and it can

be related to any fa/p(xa, Q) with scale Q > Q0. The same logic applies to fragmentation

functions.

All the scales, Qfact, Qren and Qfrag, should be of the order of the large energy scale in

the problem, the scale that allows perturbative QCD to be used in the first place. In the

example given in the previous section, this scale was the transverse momentum.

Computing photon production in proton-proton collisions from the formalism described

above implies having access to a proton parton distribution function fa/p(xa, Qfact), a parton

to photon fragmentation function Dγ/c(zc, Qfrag) and the partonic matrix element dσ̂(Qren).

The latter is currently known at next-to-leading order in the strong coupling constant for both

isolated photons [100] and fragmentation photons2 [101]. Combined with next-to-leading

order parton distribution and fragmentation functions, this perturbative QCD calculation

has been shown repeatedly to agree very well with direct photon measurements in proton-

proton collisions at RHIC3 , the LHC [21] and previous colliders [102].

The perturbative QCD framework used in this work is essentially the next-to-leading

order calculation described in the preceding paragraph. The code INCNLO [103], from the

research group that made the original calculation [101, 100], is used4. The proton parton dis-

tribution function and photon fragmentation function used are respectively CTEQ61m [105]

and BFG-2 [106].

The factorisation, renormalisation and fragmentation scales are all set equal: Qfact =

Qren = Qfrag = Q. The transverse momentum of the produced photon is used to set the

scale, with a normalisation constant: Q = NpγT . The constant N is fixed to 1/2 so as to

provide the best description of the available proton-proton measurements.

The scale Q0, described above as the lowest scale for which perturbative QCD is consid-

ered reliable, is usually Q0 ∼ 1.5 GeV in parametrizations of parton distribution functions

and fragmentation functions. With Q = pγT/2, this implies that the lowest pγT that can be

2 At next-to-leading order, there is no absolute division between isolated and fragmentation photons.
This is a consequence of the three-particle phase space of isolated photons at next-to-leading order, which
allows for e.g. a final state photon to be produced arbitrarily close to a final state parton, mimicking a
fragmentation photon. A careful treatment of the isolated and fragmentation photon’s phase space is thus
necessary to avoid double-counting, which partially blurs the distinction between the two processes.

3 This can be seen on the bottom curves of Figure 2.6, where a perturbative QCD calculation is compared
to direct photon measurements from the PHENIX collaboration.

4 The code was slightly modified to allow for the use of recent parton distribution functions through the
LHAPDF library [104].
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computed is pγT ∼ 3 GeV.

Since the direct photon excess in heavy ion collisions is mostly observed below 3 GeV, it

is very important to be able to compute prompt photons in that region of pT . Using a larger

N in Q = NpγT would allow to extend the perturbative QCD calculation to lower transverse

momentum, with the caveat that it would not describe proton-proton measurements as well

at high pT .

The approach used in this thesis exploits the observation that a change in N (in the

equality Q = NpγT ) mostly results in a change in the normalisation of the perturbative

calculation. Thus, using a larger N and adjusting the normalisation to that of N = 1/2 (i.e.

that of high pT data) allows to evaluate prompt photons at low pT . This method is described

in more details in Appendix A.

The reliability of perturbative QCD at low pT is difficult to judge, since the assumption

that the transverse momentum is large is essential to the derivation of Equation 5.1. The

transverse momentum pT must be large compared the other energy scales in the problem, in

particular ΛQCD ∼ 200 MeV.

On the other hand, comparisons of perturbative QCD calculations with low pT measure-

ments of photons and pions shows a good agreement, as discussed in Appendix A. This

suggests that perturbative QCD still provides a reasonable estimate of prompt photons at

pT as low as 1− 1.5 GeV.

5.2.2 Prompt photons in heavy ion collisions: Cold nuclear effects

and binary scaling

Perturbative QCD is one of the two ingredients necessary to evaluate prompt photons in

heavy ion collisions, the other one being binary scaling.

Two small modifications to perturbative QCD are necessary in order to account for

differences between proton-proton collisions and nucleus-nucleus collisions. First, a nucleus-

nucleus collision is not only a superposition of proton-proton collisions, but also of proton-

neutron and neutron-neutron collisions. The parton distribution of neutrons can be related

to that of protons through the isospin symmetry, e.g. fu/n(xa, Q) = fd/p(xa, Q). This effect

is called the “isospin effect” and it is included in the evaluation of prompt photons in this

work.

The second effect is the modification of the proton parton distribution function inside

a nucleus: the parton content of a proton inside of a nucleus is known to be slightly dif-

ferent from that of a free proton. This effect can be taken into account by using nuclear

parton distribution functions. For the present work, the EPS09 nuclear parton distribution
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Figure 5.1: Effect of nuclear parton distribution functions and the isospin effect on prompt
photons computed at the LHC

function [107] is used.

The two effects described above are termed “cold nuclear matter effects”, since they are

modifications to the production of hard particles that are not related to the formation of

a hot medium in nucleus-nucleus collisions. Their effect on prompt photons is shown on

Figure 5.1 for Pb-Pb collisions at
√
sNN = 2.76 TeV. It is a modest effect.

It should be noted that there are still significant uncertainties in the parametrization

of cold nuclear matter effects, and that different approaches do not fully agree [108]. The

modern nuclear parton distribution function from Ref. [107] is nevertheless expected to

provide a reasonable estimate of cold nuclear effects on prompt photons.

On top of cold nuclear matter effect, “hot nuclear matter effects” are also expected on

prompt photon production in heavy ion collisions, as discussed in Section 2.3.1. These

would take the form of suppressed fragmentation photons due to parton energy loss, along

with jet-medium photon production. While the inclusion of these effects will certainly be an

important step forward in understanding direct photon measurements in heavy ion collisions,

they are much more difficult to include than cold nuclear effects, since they depend on the

dynamical properties of the quark-gluon plasma. Their inclusion was beyond the scope of

the present work.

Binary scaling is the last ingredient necessary to complete the prompt photon calcula-

tions. As stated many time already, the number of binary collisions is computed from the

Glauber model [22].
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5.3 Thermal photon production

Hydrodynamical models of heavy ion collisions describe the expansion of the quark-gluon

plasma. This hot QCD medium has a complex spacetime distribution of local temperatures

and expansion rates, and its degrees of freedom change considerably during its lifetime. As

such, computing photons produced by this medium — so called thermal photons — is not a

simple task.

The first ingredient is the photon production rate of static, thermalised QCD matter.

This much simpler question, by itself, is not easy and has mostly been answered for limiting

cases where the medium has well-defined degrees of freedom: a gas of hadrons, or a plasma

of free quarks and gluons. An overview of the different calculations of photon emission from

hot QCD matter is presented in the next section.

5.3.1 Thermal photon rates

Photon production from a high temperature quark-gluon plasma is known at next-to-leading

order in the strong coupling constant [109]. The calculation assumes gs � 1, a value that

is understood only to be attained in a quark-gluon plasma at very high temperatures, much

larger than the temperatures of a few hundreds of MeV reached in current heavy ion collisions.

Nevertheless it is hoped that such a perturbative calculation captures the main physics of

photon production by quark and gluon degrees of freedom, and can provide a reasonable

estimate of photon production even for much larger values of gs
5.

This next-to-leading order calculation of photon emission from the QGP was found [109]

to be very similar to the leading order calculation [31]. In view of the similarity between the

leading order rate and the much more complicated next-to-leading order one, the leading

order calculation is used in this work. It is referred in what follows as the “QGP LO” photon

rate.

Attempts were made to study the effect of confinement on photon production from sys-

tems with quark and gluon degree of freedom. It was found in Ref. [111] that photons

emission at temperatures not significantly above confinement (T ∼ 200 − 500 MeV) ap-

peared to be considerably smaller than expected from perturbative calculations that do not

include the effect of confinement, such as the QGP LO rate. The model in Ref. [111] —

5 Calculations of the photon emission rate for a strongly-coupled quark-gluon plasma — with gs � 1 — are
not currently available. It is worth mentioning, however, that photon emission in the strongly-coupled regime
has been computed [110] for a supersymmetric Yang-Mills plasma, using the AdS/CFT correspondence.
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Figure 5.2: (a) Comparison of the QGP LO photon emission rate from Ref. [31] and the
semi-QGP rate from Ref. [111] at temperatures 200, 250 and 300 MeV (b) Comparison the
hadronic photon emission rate from Refs. [112, 113, 114] (“Turbide, Rapp, Gale”) and the
hadronic rate from Ref. [115] (“Dusling-Zahed”) at temperatures 160, 180 and 200 MeV.

referred to as the “semi-QGP” — is compared6 to the QGP LO rate on Figure 5.2a. The

suppression is very large, close to a factor of 10 in the T ∼ 200− 300 MeV region.

At lower temperatures, QCD matter can be described by hadronic degrees of freedom.

Two notable calculations of the thermal photon production rate in this range of temperatures

are Refs. [112, 113, 114] and Ref. [115].

The two calculations use different approaches. In Refs. [112, 113, 114], the emission

of photons from light mesons (π, K, ρ, K∗ and a1) is evaluated by describing the mesons

with a massive Yang-Mills Lagrangian. Moreover the contribution of baryons and additional

mesonic sources to photon emission is included by evaluating the in-medium self-energy of

the rho meson and relating it to the photon self-energy by through the vector dominance

model [112]. Contributions from pion bremsstrahlung, ππ → ππγ are also included [113, 114].

On the other hand, Ref. [115] uses a technique called chiral reduction to evaluate the

production of photons. This approach is not straightforward to compare to the previous

6 In Ref. [111], the effect of confinement is found to be a suppression factor that multiplies the thermal
rate computed without confinement effects, like the QGP LO rate. However, the calculation is not made
at full leading order in αs, but only at “leading log” order. In the present work, the suppression factor is
applied to the full QGP LO rate, which is an approximation. The same approximation was made in the
numerical calculations of QGP photons shown in Ref. [111].
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Figure 5.3: Comparison of the QGP LO photon emission rate from Ref. [31] and the hadronic
rate from Refs. [112, 113, 114] at temperature 160, 180 and 200 MeV.

one, although certain specific reactions such as πρ → πγ and ππ → ππγ can be approxi-

mately compared, and were found to be in qualitative agreement [115, Section II-A]. While

acceptable qualitative agreement was found for these channels, the total rates are signif-

icantly different, as shown on Figure 5.2b. The rate from Ref. [115] is much larger than

that from Refs. [112, 113, 114], by as much as a factor of 2 or 3. The two approaches of

evaluating photon emission are significantly different, and a systematic comparison of the

two calculations to identify the origin of this discrepancy is not straightforward and has not

yet been undertaken.

In summary, some uncertainties remain in the thermal photon emission rate of hot QCD

matter. In this thesis, the QGP LO rate from Ref. [31] and the hadronic rate from Refs. [112,

113, 114] are used as reference thermal rates. The QGP rate is used for temperatures above

Ttr = 180 MeV and the hadron gas rate below. As shown on Figure 5.3, the two rates are

actually similar in magnitude around Ttr = 180 MeV. This would be different if another

choice of hadronic or QGP rate had been made. The effect on direct photon calculations of

changing the value of Ttr and of using different thermal rates is investigated in Chapter 7.

Once a choice of thermal photon emission rate has been made, thermal photons can be

evaluated by folding the rate with the medium description provided by the hydrodynamical

model.
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5.3.2 Convoluting spacetime and rates

Denoting the thermal photon production rate

E
d3Γ

dk
(k, T ) (5.2)

the photon emission in a frame boosted with 4-velocity u is

E
d3Γ

dk
(K · u, T ) (5.3)

For a medium described by ideal hydrodynamics, photon emission is given by convoluting

the medium description with the thermal photon rate

E
d3N

dk
=

∫
d4XE

d3Γ

dk
(K · u(X), T (X)) (5.4)

If the medium is described by viscous hydrodynamics, the photon emission rate must be

modified accordingly. This was also the case for hadrons, as described in Section 3.4.

For photons, emission is then given by

E
d3N

dk
=

∫
d4XE

d3Γ

dk
(Kµ, uµ(X), T (X), πµν(X),Π(X)) (5.5)

Evaluating the effect on photon production of the deviation from thermal equilibrium

encoded in πµν(X) and Π(X) is not straightforward. It is the subject of the next chapter.
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Chapter 6

Thermal photon emission and

viscosity

Ideal hydrodynamics describes a medium in perfect local thermal equilibrium. Deviations

from local thermal equilibrium translate into the appearance of viscosity in the hydrody-

namical equations. Photon emission from a medium described by viscous hydrodynamics

must thus take these deviations from equilibrium into account.

For a medium with a quasiparticle description, viscosity implies a deviation of the quasi-

particle’s momentum distribution from the thermal Bose-Einstein and Fermi-Dirac distribu-

tion: shear and bulk viscosity are related to an anisotropy in the momentum distribution.

The effect of this momentum anisotropy on photon production is investigated in this chapter.

Photon production from a hot QCD medium has been evaluated from many different

approaches (c.f. Section 5.3.1); introducing the effect of viscosity in each approach presents

its own intricacies. The present chapter focuses on the effect of viscosity on two channels

of photon production by the QGP: Compton scattering (gq → γq) and quark-antiquark

annihilation (qq̄ → gγ), where q stands for a quark, q̄ for an antiquark and g for a gluon.

These two channels, which will be referred to as “2→ 2 channels”, represent approximately

half of the full leading order (in αs) photon production rate by the QGP [31].

There is an additional production channel, photon produced through soft bremsstrahlung

(2 → n channels), that contributes to the same order in αs and needs to be included for a

full leading order evaluation of photon production by the QGP [31]. Introducing the effect

of viscosity to this latter production channel presents significant new challenges, and is not

addressed in this work.

At low temperatures, the contribution of light mesons (π, K, ρ, K∗ and a1) to the

hadronic rates presented in Refs. [112, 113, 114] also represents approximately half of the

total hadronic photon rate. Since photon production from these mesons is computed in a

70



kinetic theory approach, the effect of viscosity is straightforward to include. This is discussed

briefly in the last section of this chapter. Taking into account the effect of viscosity on the

other hadronic rates is more challenging; no attempts are made in the present work.

Before turning to the effect of viscosity in the QGP “2→ 2” photon production channels,

an general overview of photon production by a hot QCD medium is provided, followed by

the derivation of general expressions for writing viscous corrections to photon production

rates.

6.1 General

At leading order in the electromagnetic coupling constant, the production of photons of

energy k and momentum k by a static1 medium is given by [117]:

k
d3Γ

dk
=

i

2(2π)3
Π12µ

µ(k,k) (6.1)

where Π12µ
µ is the in-medium photon polarization tensor in the Schwinger-Keldish formalism.

Equation 6.1 can also be given a kinetic theory formulation, which for 2 → 2 scattering

processes is [118]:

k
d3Γγ
dk

=
1

2(2π)3

∫
d3p1

2P 0
1 (2π)3

d3p2

2P 0
2 (2π)3

d3p3

2P 0
3 (2π)3

(2π)4δ4(P1 + P2 − P3 −K)|M|2

×fB/F (P1)fB/F (P2)(1 + σB/FfB/F (P3)) (6.2)

where |M|2 is the squared matrix element corresponding to the 2 → 2 scattering and fB/F

is the particle momentum distribution for bosons (σB = 1) or fermions (σF = −1). Photon

absorption by the medium is neglected in Equation 6.2.

For photon production by the QGP, Π̄<µ
µ(k,k) or |M|2 are computed directly from

quantum chromodynamics as perturbative series in the strong coupling constant. The same

cannot be done for photon emission from hadronic degrees of freedom; other approaches such

as effective models of hadronic and photonic interactions are used instead.

At both low and high temperatures, corrections to the photon rate due to viscosity

enter in Equations 6.1 and 6.2 through the particle momentum distribution fB/F (P ). More

1In this section as in this whole thesis, photons are assumed to be produced on timescales much smaller
than any macroscopic timescale of the emitting medium. As a consequence the medium is considered static
during the photon emission. The theoretical framework for photon emission from an evolving medium is
discussed in [116, Section 4.2].
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precisely, they enter in fB/F (P ) as a correction to the thermal distribution function f
(0)
B/F (P ):

fB/F (P,X) = f
(0)
B/F (P ) + δfB/F (P,X) (6.3)

Since deviations from thermal equilibrium should be small, linearising the photon emis-

sion rate kd3Γγ/dk in δfB/F (P,X) is expected to be a reasonable approximation. This

linearisation can be used to write general expressions for the viscous corrections to photon

production, which is shown in the next section.

6.1.1 Viscosity and generalised tensor decomposition

General formulae for the correction to photon production due to viscosity can be derived

for Equation 6.2, since the momentum distribution fB/F (P,X) are explicit. Linearising in

δfB/F (P,X),

k
d3Γγ
dk

≈ 1

2(2π)3

∫
d3p1

2P 0
1 (2π)3

d3p2

2P 0
2 (2π)3

d3p3

2P 0
3 (2π)3

(2π)4δ4(P1 + P2 − P3 −K)|M|2

×
[
f

(0)
B/F (P1)f

(0)
B/F (P2)(1 + σB/Ff

(0)
B/F (P3))

+δfB/F (P1)f
(0)
B/F (P2)(1 + σB/Ff

(0)
B/F (P3))

+f
(0)
B/F (P1)δfB/F (P2)(1 + σB/Ff

(0)
B/F (P3))

+f
(0)
B/F (P1)f

(0)
B/F (P2)(σB/F δfB/F (P3))

]
= k

d3Γ
(0)
γ

dk
+ k

d3Γ
(visc)
γ

dk
(6.4)

where kd3Γ
(0)
γ /dk is the ideal emission rate and its correction due to viscosity is

k
d3Γ

(visc)
γ

dk
=

1

2(2π)3

∫
d3p1

2P 0
1 (2π)3

d3p2

2P 0
2 (2π)3

d3p3

2P 0
3 (2π)3

(2π)4δ4(P1 + P2 − P3 −K)|M|2

×
[
δfB/F (P1)f

(0)
B/F (P2)(1 + σB/Ff

(0)
B/F (P3))

+f
(0)
B/F (P1)δfB/F (P2)(1 + σB/Ff

(0)
B/F (P3))

+f
(0)
B/F (P1)f

(0)
B/F (P2)(σB/F δfB/F (P3))

]
(6.5)

To proceed further, assumptions need to be made about the form of δfB/F (P,X). A

first assumption is that δfB/F (P,X) is linear in the shear stress tensor πµν and the bulk
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pressure Π. In this case:

δfB/F (P,X) = πµν(X)P µP νS(P,X) + Π(X)B(P,X) (6.6)

where two properties of πµν(X), πµν(X)gµν = 0 and πµν(X)uµ = 0, were used to constrain

the expansion of δfB/F (P,X) in πµν(X).

The arbitrary functions S(P,X) and B(P,X) can depend on the spacetime position X

through e.g. the local value of the temperature T (X), the energy density ε(X), the entropy

density s(X), etc. All these implicit functions of X are thermodynamical quantities that are

related through the equation of state of the medium. For practical reasons, it is better if

corrections to photon emission do not have an explicit dependence on the equation of state.

This can be achieved if the momentum dependence of S(P,X) and B(P,X) can be factorised

from the rest such as:

δfB/F (P,X) = πµν(X)P µP ν
∑
j

S
(j)
X (X)S

(j)
M (P, T ) + Π(X)

∑
j

B
(j)
X (X)B

(j)
M (P, T ) (6.7)

where it was assumed that the momentum-dependent factor S/B
(j)
M (P, T ) could also depend

on the temperature, but no other thermodynamical quantities. The subscript X was used

to identify the spatial part of S and B, while the subscript M is used for the momentum

dependent term. The sum over j is necessary if e.g. B(P,X) cannot be factorised as

BS(X)BM(P ) but is factorisable as a sum of such terms (B
(1)
S (X)B

(1)
M (P )+B

(2)
S (X)B

(2)
M (P )).

It will be shown shortly that such a general form is necessary for the δfB/F (P,X) used in

this thesis. In general, expressions for δfB/F (P,X) derived from the Boltzmann equation

can be written without loss of generality as Equation 6.7 (see e.g. Ref. [65, Chapter 4]).

Using Equation 6.7, the effect of viscosity on photon production (Equation 6.5) can be

written

k
d3Γ

(visc)
γ

dk
= πµν(X)KµKν

∑
j

S
(j)
X (X)S̃

(j)
M (K,T ) + Π(X)

∑
j

B
(j)
X (X)B̃

(j)
M (K,T ) (6.8)

where πµν(X)gµν = 0 and πµν(X)uµ = 0 were used again to constrain the coefficient multi-

plying πµν(X).
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The coefficient S̃
(j)
M (K,T ) is given by

S̃
(j)
M (K,T ) =

1

2(K · u)2

[
gµν + 2uµuν + 3

(
KµKν

(K · u)2
− (Kµuν + uµKν)

(K · u)

)]
× 1

2(2π)3

∫
d3p1

2P 0
1 (2π)3

d3p2

2P 0
2 (2π)3

d3p3

2P 0
3 (2π)3

(2π)4δ4(P1 + P2 − P3 −K)|M|2

×
[(
P µ

1 P
ν
1 S

(j)
M (P1)

)
f

(0)
B/F (P2)(1 + σB/Ff

(0)
B/F (P3))

+f
(0)
B/F (P1)

(
P µ

2 P
ν
2 S

(j)
M (P2)

)
(1 + σB/Ff

(0)
B/F (P3))

+f
(0)
B/F (P1)f

(0)
B/F (P2)

(
σB/FP

µ
3 P

ν
3 S

(j)
M (P3)

)]
(6.9)

while B̃
(j)
M (K,T ) is given by the simpler expression

B̃
(j)
M (K,T ) =

1

2(2π)3

∫
d3p1

2P 0
1 (2π)3

d3p2

2P 0
2 (2π)3

d3p3

2P 0
3 (2π)3

(2π)4δ4(P1 + P2 − P3 −K)|M|2

×
[(
B

(j)
M (P1)

)
f

(0)
B/F (P2)(1 + σB/Ff

(0)
B/F (P3))

+f
(0)
B/F (P1)

(
B

(j)
M (P2)

)
(1 + σB/Ff

(0)
B/F (P3))

+f
(0)
B/F (P1)f

(0)
B/F (P2)

(
σB/FB

(j)
M (P3)

)]
(6.10)

Since S̃
(j)
M (K,T ) and B̃

(j)
M (K,T ) are scalars, they can only depend on K through the

combination K · u. In the rest frame of the fluid, K · u = K0 = k, which means that

S̃
(j)
M (K,T ) and B̃

(j)
M (K,T ) only depend on the energy of the photon, along with the tem-

perature. Although S̃
(j)
M (K,T ) and B̃

(j)
M (K,T ) cannot generally be reduced to an analytical

expression, it is nevertheless possible to tabulate them as functions of the photon energy k

and the medium’s local temperature T .

All the above derivations were made possible by the linearisation in δfB/F (P,X) of Equa-

tion 6.5, as well as the assumption that δfB/F (P,X) can be written as Equation 6.7. With

these assumptions, the final expression for the photon emission rate is

k
d3Γγ
dk

= k
d3Γ

(0)
γ

dk
+ πµν(X)KµKν

∑
j

S
(j)
X (X)S̃

(j)
M (K,T ) + Π(X)

∑
j

B
(j)
X (X)B̃

(j)
M (K,T )

(6.11)

If photon production is computed in the diagrammatic method from Equation 6.1 instead

of the kinetic theory approach, linearisation in δfB/F (P,X) can still be used to write the

photon rate as Equation 6.11, although with different expressions for S̃
(j)
M (K) and B̃

(j)
M (K).
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There is no general formula for S̃
(j)
M (K) and B̃

(j)
M (K) in this case; it depends on the exact

expression for Π12µ
µ(k,k).

Having formulated general expressions for the effect of viscosity on photon emission, the

exact form of momentum anisotropy δfB/F (P,X) used in this work is specified in the next

section.

6.1.2 Momentum anisotropy δfB/F (P,X)

The momentum anisotropy δfB/F (P,X) affects the production of photons and hadrons alike

(see Section 3.4). The form for δfB/F (P,X) used in this thesis for the momentum distribution

of hadron was given at Equations 3.37, 3.38 and 3.39.

For photons produced at low temperatures, it is also appropriate to use Equations 3.37,

3.38 and 3.39 as momentum anisotropy.

On the other hand, at high temperature, the momentum anisotropy of bulk viscosity

takes a different form. This is a consequence of quarks and gluons not having fixed masses

like hadrons, but effective masses that depend on the temperature. In this case, δfbulk is

given by [84]

δf bulk,QGPB/F = −f (0)
B/F

(
1 + σB/Ff

(0)
B/F

)[m2

T 2

1

P 0/T
− P 0

T

]
Π

15
(

1
3
− c2

s

)
(ε+ P)

(6.12)

The mass entering Equation 6.12 is taken to be the thermal mass of quarks, m2
∞ = g2

sT
2/3.

The relation between τΠ and ζ given by Equation 3.22 was used in Equation 6.12. For

hadrons, τΠ/ζ was computed from a hadron resonance gas, but this would not be appropriate

for quarks and gluons.

For shear viscosity, the same expression for the momentum anisotropy is used for quarks

and gluons as for hadronic degrees of freedom, i.e. Equation 3.38, since the relation between

mass and temperature does not affect it.

Using the notation of Equation 6.7, the momentum anisotropy at high temperatures is

given by

δfQGPB/F (P,X) = πµν(X)P µP νSXSM(P, T ) + Π(X)BQGP
X BQGP

M (P, T ) (6.13)
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with

SX =
1

2(ε+ P)
; SM =

f
(0)
B/F

(
1 + σB/Ff

(0)
B/F

)
T 2

BQGP
X = − 1

15
(

1
3
− c2

s

)
(ε+ P)

; BQGP
M = f

(0)
B/F (P )

(
1 + σB/Ff

(0)
B/F (P )

)[m2

T 2

1

P 0/T
− P 0

T

]
(6.14)

For hadronic degrees of freedom, it is given by

δfHGB/F (P,X) = πµν(X)P µP νSXSM(P, T )

+Π(X)
[
BHG,1
X (X)BHG,1

M (P, T ) +BHG,2
X (X)BHG,2

M (P, T )
]

(6.15)

with

BHG,1
X = −τΠ

ζ
; BHG,1

M = f
(0)
B/F (P )

(
1 + σB/Ff

(0)
B/F (P )

) 1

3

m2

T 2

1

P 0/T

BHG,2
X = −τΠ

ζ

(
1

3
− c2

s

)
; BHG,2

M = f
(0)
B/F (P )

(
1 + σB/Ff

(0)
B/F (P )

)(
−P

0

T

)
(6.16)

The above decompositions are not uniquely defined, since temperature factors and con-

stants can be in either coefficients. This is not a problem as long as the above definitions

are used consistently.

With the expressions for δfB/F (P,X) fixed, the next section of this chapter is dedicated

to evaluating S̃
(j)
M (K,T ) and B̃

(j)
M (K,T ) for photon produced through 2 → 2 scattering in

the QGP.

6.2 QGP photon rates for 2→ 2 channels

Photon production through 2 → 2 scattering contributes at leading order in the strong

coupling constant to photon production by a hot quark-gluon plasma.

The evaluation of these channels of photon production is made in two steps, corresponding

to two kinematic regions that need to be treated differently. These kinematic regions are

referred to as the “hard” and “soft” parts of the 2 → 2 processes. This division of the

calculation can be understood from the diagrams that contribute to the photon self-energy

Π12µ
µ(k,k) in Equation 6.1. These diagrams are shown on Figure 6.1.

The hard and soft division of the kinematics is due to the quark self-energy delimited

by the quark propagators with momentum Q in the first two diagrams of Figure 6.1. In

these two diagrams, the quark self-energy is evaluated with one gluon loop, which results
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Figure 6.1: Photon self-energies contributing at leading order in αs to photon production
from the QGP (Figure adapted from [109])

in a leading order contribution to Π12µ
µ(k,k) when the momentum Q is of order T . The

temperature T is referred to as the “hard” scale.

There is also a soft scale, gsT , with the assumption gs � 1. When Q ∼ gT the quark

self-energy cannot be evaluated with a single gluon loop, due to subtleties in power counting

in finite temperature quantum chromodynamics. An infinite number of diagrams must be

resummed. This approach is called the “hard thermal loop” resummation [119]. The soft

part of the calculation corresponds to evaluating the first two diagrams of Figure 6.1 with

this resummed quark self-energy.

The spatial part of Q, q = |q|, is used to separate the hard and soft part of the calculation.

The hard part corresponds to q > q∗ and the soft part to q < q∗. The cut-off q∗ is chosen

such that gsT � q∗ � T . The dependence of the photon rate on this cut-off is investigated

later in this section.

Following the definitions given in Sections 6.1.1 and 6.1.2, the rate is written

k
d3ΓQGPγ

dk
= k

d3Γ
(0)QGP
γ

dk
+
πµν(X)KµKν

2(ε+ P)
S̃QGPM (K,T )

+

(
− Π(X)

15
(

1
3
− c2

s

)
(ε+ P)

)
B̃QGP
M (K,T ) (6.17)

As a consequence of the division in two kinematic regions of photon production from

QGP 2 → 2 channels, the effect of viscosity must be evaluated separately for each part of

the calculation. As a first step, the effect of shear viscosity on QGP 2 → 2 processes is

investigated, starting with the hard part followed by the soft part. This forms the first part

(Section 6.2.1) of this section. The result is S̃QGPM (K,T, q∗).

The calculation of the effect of shear viscosity is then repeated using the “forward scat-

tering approximation”, which simplifies considerably the evaluation of the effect of viscosity

on QGP 2→ 2 processes. The validity of the forward scattering approximation is established

by comparison with the full calculation.

Finally the forward scattering approximation is used in Section 6.2.2 to evaluate the effect
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of bulk viscosity on QGP 2→ 2 photon production, yielding an estimate of B̃QGP
M (K,T ).

6.2.1 Shear viscosity correction: full calculation

The function S̃QGPM (K,T, q∗) from Equation 6.17 is divided in two:

S̃QGPM (K,T, q∗) = S̃hardM (K,T, q∗) + S̃softM (K,T, q∗) (6.18)

The effect on QGP 2 → 2 photon production of an anisotropy in the momentum distri-

bution of quarks and gluons was investigated in Ref. [120] for a momentum anisotropy of

the form fB/F (p) ∝ f
(0)
B/F (

√
p2 + ξ(p · n̂)2) with n̂ the direction of the assumed momentum

anisotropy. This specific form of momentum anisotropy allows for a fairly straightforward

inclusion of the effect of momentum anisotropy in the photon production rates. On the other

hand, it does not correspond to the δfB/F (P,X) ansatz typically used in hydrodynamical

models of heavy ion collisions. In particular, the expression for δfB/F (P,X) used in the

present work (Section 6.1.2) cannot be written as f
(0)
B/F (

√
p2 + ξ(p · n̂)2).

In what follows, the approach presented in Ref. [120] is extended to the momentum

anisotropy ansatz δf shearB/F (P,X) used in this thesis. The “hard” kinematic region is treated

first.

6.2.1.1 Hard 2→ 2 kinematic region

The diagrams that represent the 2→ 2 scattering contribution to Π12µ
µ(k,k) at leading order

in αs are shown on Figure 6.1. These diagrams can be written in terms of matrix elements,

to be used with Equation 6.2. The squared matrix element for Compton scattering and

quark-antiquark annihilation are explicitely given by [31]

|MC |2 = NM

[
−s
t

+
−t
s

]
(6.19)

|MA|2 = NM

[u
t

]
(6.20)

with

NM ≡ 64παEM

[
Nc

∑
s

q2
s

]
CFg

2
s (6.21)

where Nc = 3 and CF = 4/3 for QCD, and αEM ≈ 1/137 is the electromagnetic coupling

constant. The sum over s is a sum over the quark flavours, with qs being the quark’s electric

charge in units of the proton’s charge. The variable gs =
√

4παs is the strong coupling
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constant (the name is used for both gs and αs). The Mandelstam variables are defined as:

s = (P1 + P2)2; t = (P1 −K)2; u = (P1 − P3)2 (6.22)

where P1 and P2 are the 4-momenta of the initial state quarks/gluons, P3 that of the final

state quark/gluon and K that of the photon.

Photon production is thus given by

k
d3Γhardγ

dk
=

1

2(2π)3

∫
d3p1

2P 0
1 (2π)3

d3p2

2P 0
2 (2π)3

d3p3

2P 0
3 (2π)3

(2π)4δ4(P1 + P2 − P3 −K) (6.23)

×
[
fF (P1)fB(P2)(1− fF (P3))|MC |2 + fF (P1)fF (P2)(1 + fB(P3))|MA|2

]
The division of the kinematic in soft and hard parts only affects terms with 1/t depen-

dence in the matrix elements [31, Section 5]. Separating the 1/t terms from the rest, photon

emission can be written:

k
d3Γhardγ

dk
= k

d3Γ
[u/t]
γ

dk
+ k

d3Γ
[−s/t]
γ

dk
+ k

d3Γ
[−t/s]
γ

dk
(6.24)

with

k
d3Γ

[u/t]
γ

dk
=

NM

2(2π)3

∫
d3p1

2P 0
1 (2π)3

d3p2

2P 0
2 (2π)3

d3p3

2P 0
3 (2π)3

(2π)4δ4(P1 + P2 − P3 −K)

×
[
fF (P1)fF (P2)(1 + fB(P3))

(u
t

)]
(6.25)

k
d3Γ

[−s/t]
γ

dk
=

NM

2(2π)3

∫
d3p1

2P 0
1 (2π)3

d3p2

2P 0
2 (2π)3

d3p3

2P 0
3 (2π)3

(2π)4δ4(P1 + P2 − P3 −K)

×
[
fF (P1)fB(P2)(1− fF (P3))

(
−s
t

)]
(6.26)

and

k
d3Γ

[−t/s]
γ

dk
=

NM

2(2π)3

∫
d3p1

2P 0
1 (2π)3

d3p2

2P 0
2 (2π)3

d3p3

2P 0
3 (2π)3

(2π)4δ4(P1 + P2 − P3 −K)

×fF (P1)fB(P2)(1− fF (P3))

(
−t
s

)
(6.27)

The same notation as Ref. [31] is used for convenience.

The phase space of Equations 6.25 and 6.26 is restricted to q > q∗, with q ≡ |k − p1|.
The region q < q∗ is the soft part of the calculation, treated in the next section. The cut-off

q∗ is assumed to be gsT � q∗ � T . Equation 6.27 does not have any kinematic restriction,

and integration is over the full phase space.
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Equations 6.25, 6.26 and 6.27 all correspond to separate terms in the viscous correction

S̃hardM (K,T ):

S̃hardM (K,T ) = S̃hardM (K,T, q∗)[u/t] + S̃hardM (K,T, q∗)[s/t] + S̃hardM (K,T )[t/s] (6.28)

The general decomposition from Section 6.1.1 can be used to evaluate S̃hardM (K,T ). Fol-

lowing Equation 6.9, the term S̃hardM (K,T )[u/t] is given by

S̃hardM (K,T )[u/t] =
1

2(K · u)2

[
gµν + 2uµuν + 3

(
KµKν

(K · u)2
− (Kµuν + uµKν)

(K · u)

)]
× NM

2(2π)3

∫
d3p1

2P 0
1 (2π)3

d3p2

2P 0
2 (2π)3

d3p3

2P 0
3 (2π)3

(2π)4δ4(P1 + P2 − P3 −K)
(u
t

)
×

P µ
1 P

ν
1

f (0)
F (P1)

(
1− f (0)

F (P1)
)

T 2

 f
(0)
F (P2)(1 + f

(0)
B (P3))

+f
(0)
F (P1)P µ

2 P
ν
2

f (0)
F (P2)

(
1− f (0)

F (P2)
)

T 2

 (1 + f
(0)
B (P3))

+f
(0)
F (P1)f

(0)
F (P2)P µ

3 P
ν
3

f (0)
B (P3)

(
1 + f

(0)
B (P3)

)
T 2


(6.29)

Quarks are considered massless in this part of the calculation, and there are no other en-

ergy scales than Pi, K and T . It is thus convenient to scale all momenta by the temperature,

P̃i = Pi/T and K̃i = K/T , to get a unitless integral:

S̃hardM (K̃)[u/t] =
1

2(K̃ · u)2

[
gµν + 2uµuν + 3

(
K̃µK̃ν

(K̃ · u)2
− (K̃µuν + uµK̃ν)

(K̃ · u)

)]
× NM

24(2π)8
Y µν [u/t] (6.30)

with

Y µν [u/t] ≡
∫
d3p̃1

P̃ 0
1

d3p̃2

P̃ 0
2

d3p̃3

P̃ 0
3

δ4(P̃1 + P̃2 − P̃3 − K̃)
(u
t

)
f

(0)
F (p̃1)f

(0)
F (p̃2)(1 + f

(0)
B (p̃3))

×
[
P̃ µ

1 P̃
ν
1

(
1− f (0)

F (p̃1)
)

+ P̃ µ
2 P̃

ν
2

(
1− f (0)

F (p̃2)
)

+ P̃ µ
3 P̃

ν
3 f

(0)
B (p̃3)

]
(6.31)
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Applying the projector on Y µν [u/t], S̃hardM (K̃)[u/t] reduces to

S̃hardM (K̃)[u/t] =
1

2(K̃ · u)2

NM

24(2π)8

[
−Y 00[u/t] +

k̃ik̃jY
ij[u/t]

k̃2

]
(6.32)

where i and j run over the spatial index only.

Similar expression are found for S̃hardM (K̃)[−s/t] and S̃hardM (K̃)[−t/s] by replacing the

matrix element u/t by −s/t and −t/s.
No simple expressions were found for Y 00 and Y ij. Their complete calculation is shown

in Appendix B.

Both S̃hardM (K̃)[u/t] and S̃hardM (K̃)[−s/t] depend on the cut-off q∗. This cut-off dependence

should be canceled by the soft part of the calculation, which is computed in the next section.

6.2.1.2 Soft 2→ 2 kinematic region

Soft photons are evaluated with Equation 6.1. Using the hard thermal loop prescription

described in the beginning of this chapter, Π̄12µ
µ(k,k) is given by [120]

Π12µ
µ(K) = ie2

∑
s

q2
sNc

∫
q<q∗

d4Q

(2π)4
Tr[SD12(Q)γµS21(Q−K)γµ

+SD21(Q)γµS12(Q+K)γµ] (6.33)

where SD refers to dressed (HTL) quark propagators and γµ are the Dirac gamma matrices.

The momentum Q is defined in the same way as in the previous section (see also Figure 6.1),

such that the integral over Q must be limited to q < q∗.

The free fermion and boson propagators are given, respectively, by

S12/21(K) = /K2πiδ(K2)[−θ(−σK0) + fF (K)] (6.34)

∆12/21(K) = −2πiδ(K2)[θ(−σK0) + fB(K)] (6.35)

while the dressed propagators are given by

SD12/21(P ) = SDR (P )Σ12/21(P )SDA (P ) (6.36)

where

Σ12/21(P ) = 2ig2
sCF

∫
d4V

(2π)4
S12/21(V )∆12/21(P − V ) (6.37)

and

SDR (P ) =
(/P − ΣR(P ))

(P − ΣR(P ))2
; ΣR(P ) = Σµ

R(P )γµ (6.38)
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with

Σµ
R(K) = m2

∞

∫
d3v

(2π)3

4(fF (V ) + fB(V ))

v

V µ

V ·K + iε
; m2

∞ =
CFg

2
sT

2

4
(6.39)

The advanced fermion propagator and fermion self-energy are given by the complex

conjugate of the retarded ones.

All these relations hold for momentum distributions fF/B(P ) with arbitrary momentum

anisotropy [121, 122, 123], as long as the medium is static.

Equation 6.33 can be simplified considerably if the distribution function fF/B(P ) is as-

sumed to be reflection-symmetric:

fF/B(−P ) = fF/B(P ) (6.40)

This assumption is valid for the thermal distribution f
(0)
F/B(P ) = 1/(e|P

0|/T ± 1).

Since δf shearF/B only depends on P through f
(0)
F/B(P ), and through P µP νπµν , which is triv-

ially even in P , δf shearF/B also respects Equation 6.40.

Using Equation 6.40, Equation 6.33 can be shown to reduce to

−iΠ µ
12 µ(K) =

8e2
∑

q q
2
sNc

(2π)3
fF (K)

∫
q<q∗

d4Qδ(K ·Q)Im
[
K · SDR (Q)

]
(6.41)

The complete derivation is shown in Appendix C.1.

The soft contribution to the photon production rate is thus given by

k
d3Γsoftγ

dk
=
−4e2

∑
q q

2
sNc

(2π)6
fF (K)

∫
q<q∗

d4Qδ(K ·Q)Im
[
K · SDR (Q)

]
(6.42)

Two terms linear in δf shearF/B are possible. The first one has δf shearF in the prefactor fF (K),

and the retarded self-energy SDR (Q) evaluted with thermal distributions f
(0)
B/F . The second

one has the prefactor f
(0)
F (K), and one factor of δf shearF/B in SDR (Q), which implies linearising

the self-energy SDR (Q) in δf shearF/B .

Defining

A(k) ≡ 1

2πk
e2Nc

∑
s

q2
sm

2
∞f

(0)
F (k) (6.43)

to follow the notation of Ref. [31], and

J(K) ≡ 1

m2
∞

∫
d4Qδ(K ·Q)KµIm[SDµR (Q)] (6.44)

82



it follows that Equation 6.42 can be written

E
dΓsoftγ

dk3
=
−4k

(2π)5
A(k)

fF (K)

f
(0)
F (K)

J(K) (6.45)

By scaling Q by m∞ (Q = m∞X), J(K) can be shown to be unitless

J(K) =

∫
d4Xδ(K ·X)KµIm

[
−Σ̃µ

R(X)

(X − Σ̃R(X))2

]
(6.46)

where

Σ̃µ
R(X) =

∫
d3v

(2π)3

f(V )

v

V µ

V ·X + iε
(6.47)

Defining J(K) ≡
∑

l Jl(K) where Jl(K) has “l” powers of δf shearF/B , the soft part of the

photon rate can be written, at leading order in δf shearF/B , as

E
dΓsoftγ

dk3
≈ −4k

(2π)5
A(k)

[
fF (K)

f
(0)
F (K)

J0(K) + J1(K)

]

= E
dΓ

(0)soft
γ

dk3
+
−4k

(2π)5
A(k)

[
δfF (K)

f
(0)
F (K)

J0(K) + J1(K)

]
(6.48)

To write the above equation in the form of Equation 6.17, the expression of δf shearF (K)

used in this thesis is inserted, and the definition

J1 ≡
πµνK

µKν

2(ε+ P)

J ′1
k2

(6.49)

is used to define J ′1. The rate can then be written as

E
dΓsoftγ

dk3
= E

dΓ
soft(0)
γ

dk3
+
πµνK

µKν

2(ε+ P)
S̃softM (K/T, q∗) (6.50)

with

S̃softM (K/T, q∗) =
−4k

(2π)5
A(k)

[(
1− f (0)

F

) J0(K)

T 2
+
J ′1(K)

k2

]
(6.51)

Functions J0(K) and J ′1(K) do not have simple expressions. Full expression for each

function is given in Appendix C.2.
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6.2.1.3 Discussion

The final formula for the effect of shear viscosity on QGP 2→ 2 photon production is

E
dΓγ
dk3

= E
dΓ

(0)
γ

dk3
+
πµνK

µKν

2(ε+ P)
S̃QGPM (K/T, q∗) (6.52)

with

S̃QGPM (K/T, q∗) =
kA(k)

(2π)3k2

(
−4

(2π)2

[
k̃2
(

1− f (0)
F

)
J0(K) + J ′1(K)

]
+ (6.53)

2

f
(0)
F (k)(2π)4

[
−
(
Y 00[u/t](q∗) + Y 00[−s/t](q∗) + Y 00[−t/s]

)
+

kikjY
ij[u/t] + kikjY

ij[−s/t] + kikjY
ij[−t/s]

k2

])
To ease comparisons between the correction to the rate due to viscosity and the ideal

rate, S̃QGPM (K/T, q∗) is written

S̃QGPM (K/T, q∗) ≡
kA(k)

(2π)3k2
Rshear(K/T, q∗) (6.54)

and the ideal rate is written as

E
dΓ

(0)
γ

dk3
≡ kA(k)

(2π)3
Rideal(K/T, q∗) (6.55)

such that

E
dΓ

(0)
γ

dk3
=
kA(k)

(2π)3

[
Rideal(K/T, q∗) +

πµν
2(ε+ P)

KµKν

k2
Rshear(K/T, q∗)

]
(6.56)

Both Rideal(K/T, q∗) and Rshear(K/T, q∗) are dimensionless quantities whose q∗ depen-

dence is shown on Figure 6.2, at k/T = 2. Results are shown for a small and a large value

of gs: gs = 0.01 (left) and gs = 2 (right).

When a small value of gs is used, there is a clear separation of scale between gsT and T ,

which is necessary for the hard thermal loop resummation to work. In this case, the photon

rate calculation is expected to be largely independent of the cut-off q∗ between gsT and T .

This is the observed behaviour on Figure 6.2a for both the ideal and the viscous part of

the rate. The q∗/T axis is logarithmic, and both Rideal(K/T, q∗) and Rshear(K/T, q∗) show

a large plateau between q∗/T = gs = 0.01 and q∗/T = 1.

Figure 6.2b is shown to highlight that this plateau cannot be maintained when gs & 1,

due to the loss of scale separation between gsT and T . The fact that the calculation breaks
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Figure 6.2: Coefficient Rideal(K/T, q∗) and Rshear(K/T, q∗), as defined in Equations 6.55 and
6.54, with respect to cut-off q∗/T , at k/T=2 for (a) gs = 0.01 and (b) gs = 2

down at gs & 1 is not surprising, since such values of gs break the underlying assumptions

of the derivation.

On the other hand it is still relevant to understand how the calculation behave in this

limit, since the values of gs typically used in heavy ion collisions are larger than one. This

evaluation of the effect of shear viscosity on photon production will thus be used for large

value of gs. Since the minimum of both Rideal(K/T, q∗) and Rshear(K/T, q∗) is still around

q∗/T =
√
gs, despite the absence of plateau around it, choosing q∗/T ∼

√
gs minimises the

dependence of the rate on the unphysical parameter q∗. This choice of q∗ appears to be the

best possible one if this calculation is pushed outside its region of applicability in gs.

Dependence of Rshear(K/T )
Rideal(K/T )

on gs and
k
T

Fixing q∗/T =
√
gs, interesting properties of the

ratio Rshear(K/T )/Rideal(K/T ) can be observed by plotting it with respect to gs (Figure 6.3a)

and k/T (Figure 6.3b).

The first figure indicates that for any realistic value of gs, the ratio Rshear/Rideal is

essentially independent of gs. This means that the ideal calculation and its correction due

to shear viscosity have the same dependence on gs, which is a non-trivial result.

Moreover Figure 6.3b indicates that the k/T dependence of the ratio is roughly quadratic

in (k/T). This is not necessarily surprising since the momentum dependence of δf shear is also

quadratic. At low values of the strong coupling, the dependence on k/T is more accurately
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Figure 6.3: (a) Ratio Rshear(K/T )/Rideal(K/T ) with respect to the strong coupling constant
gs (b) Ratio Rshear(K/T )/Rideal(K/T ) with respect k/T . In both cases, q∗/T =

√
gs.

given by:
Rshear(K/T )

Rideal(K/T )
≈
(
k

T

)2

(1− f (0)
F (k)) (6.57)

This is shown on Figure 6.3b, compared with the k/T dependence of Rshear/Rideal for

gs = 0.01. The k/T dependence is also shown for gs = 2, for reference.

The origin of Equation 6.57 can be understood in the forward scattering approxima-

tion [124, Chapter 16], which is an approximation for the matrix elements of QGP 2 → 2

processes that was used in Ref. [125] as a straightforward approach to evaluate viscous cor-

rections on photon production rates.

Forward scattering approximation The idea behind the forward scattering approx-

imation is that most photons produced in Compton scattering and quark-antiquark anni-

hilation originate from a restricted region of phase space, specifically the region where the

momentum of the produced photon is approximately collinear with one of the initial state

quarks. It implies that Equation 6.24 can be approximated by

k
d3Γhardγ

dk
≈ fF (K)

2(2π)3

∫
d3p1

2P 0
1 (2π)3

d3p2

2P 0
2 (2π)3

d3p3

2P 0
3 (2π)3

(2π)4δ4(P1 + P2 − P3 −K)(6.58)

×
[
fB(P2)(1− fF (P3))|MC |2 + fF (P2)(1 + fB(P3))|MA|2

]
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by using fF (P1) ≈ fF (K).

Assuming that the dominant contributions to viscous effects originate from the fF (K)

pre-factor, and not the momentum distributions that are integrated over inside the integral,

it means that

k
d3Γhardγ

dk
≈ fF (K)

f
(0)
F (K)

[
k
d3Γ

(0)hard
γ

dk

]
(6.59)

For the soft part, Equation 6.42 can also be written as

k
d3Γsoftγ

dk
≈ fF (K)

f
(0)
F (K)

[
k
d3Γ

(0)soft
γ

dk

]
(6.60)

under the reasonable assumption that the dominant viscous effects originate from the fF (K)

pre-factor, and not from the effect of fF/B in the retarded self energy (see text after Equa-

tion 6.42).

Since
fF (K)

f
(0)
F (K)

=
πµνKµKν

k2

(
k

T

)2 (
1− f (0)

F (k)
)

(6.61)

it is straightforward to see that Equations 6.59 and 6.60 lead to Equation 6.57.

Equation 6.57 can thus be used to provide a simple estimate of the effect of viscosity on

QGP 2→ 2 photon production rates. It is used in the next section to evaluate the effect of

bulk viscosity on photon production.

6.2.2 Bulk viscosity correction

Following the previous section, the effect of bulk viscosity on QGP 2→ 2 photon production

can be approximated by

k
d3Γbulkγ

dk
≈ δf bulkF (K)

f
(0)
F (K)

[
k
d3Γ

(0)
γ

dk

]
(6.62)

where kd3Γ
(0)
γ /dk is the ideal QGP 2→ 2 emission rate.

Inserting the value of δf bulkF (K) used in this thesis, the rate correction becomes

k
d3Γbulkγ

dk
≈ − Π

15
(

1
3
− c2

s

)
(ε+ P)

(
1− f (0)

F (K)
)[m2

T 2

1

k/T
− k

T

][
k
d3Γ

(0)
γ

dk

]
(6.63)

implying that the value of B̃QGP
M (K,T ) as defined in Equation 6.17 is given by

B̃QGP
M (K,T ) ≈

(
1− f (0)

F (K)
)[m2

T 2

1

k/T
− k

T

][
k
d3Γ

(0)
γ

dk

]
(6.64)
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Figure 6.4: Examples of photon production channels for mesons (Figure adapted from [126])

The mass m is taken to be the asymptotic thermal quark mass, m∞ = gsT/
√

3.

This concludes this section on the correction due to viscosity on photon production

through Compton scattering and quark-antiquark annihilation in a hot quark-gluon plasma.

In the next section, a brief overview of viscous effect on photon production from light mesons

is provided.

6.3 Mesonic photon rate

Photon produced by mesonic interactions involving π, K, ρ, K∗ and a1 are included in this

thesis using the effective Lagrangian approach described in Ref. [112]. Example of production

channels are shown on Figure 6.4.

Photon production is evaluated in a kinetic approach with Equation 6.2. Consequently

the general derivations from Section 6.1.1 can be used to compute viscous corrections to the

rate.

Evaluating the viscous corrections — or the ideal rate itself for that matter — is not

straightforward because of the number and complexity of the matrix elements. The full

matrix elements are available in Refs. [127, Appendix C] and [128, Appendix D].

The effect of shear viscosity on this channel of photon production were first investigated

in Ref. [36], and were also used in Ref. [38]. The numerical evaluation of the effect of bulk

viscosity on photon emission from mesons is evaluated in the same way as in these two

publications [129].
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Chapter 7

An up-to-date hydrodynamical

calculation of photon production in

heavy ion collisions

In this chapter, direct photon production at RHIC and the LHC is computed for the same

hydrodynamical model used to evaluate hadron production in Chapter 4. The formalism

used to compute thermal, prompt and non-cocktail photons was described in Chapter 5.

The effect of viscosity on photon production was discussed in Chapter 6. A summary of

these previous chapters is provided in the first section of the present chapter.

The rest of the chapter is divided as follows. The proper way of evaluating the photon mo-

mentum anisotropy is explained in Section 7.2. Comparison with preliminary measurements

from the LHC are made in Section 7.3. A discussion of certain features and uncertainties of

the photon calculations is made in the same section. Comparisons with RHIC measurements

close this chapter.

7.1 Summary of the model

Prompt photons are computed as described in Section 5.2. In the present work, they depend

only on the type of nuclei and center-of-mass energy of the heavy ion collisions, and not on

the dynamics of the QGP created in the collisions. They are thus completely independent

of any features of the hydrodynamical model.

Thermal photons are computed by folding the hydrodynamical description of the medium

used in Chapter 4 together with photon production rates. The equilibrium rates used in this

work were described in Section 5.3. Viscous corrections evaluated in Chapter 6 are included.
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Rate Ideal? Shear correction? Bulk correction?
QGP 2→ 2 [31] Yes Yes Partial (Forward Scattering)

QGP bremsstrahlung [31] Yes No No
HG light mesons [112] Yes Yes Yes

HG ρ spectral function [112] Yes No No
HG π + π bremsstrahlung [113] Yes No No

Table 7.1: Photon rates used in the evaluation of thermal photons in this chapter

A summary of the photon rates and viscous corrections used in this work is given in Table 7.1.

The strong coupling constant is set to gs = 2, corresponding to αs ≈ 0.3, which is in line

with values of αs extracted from analyses of jet energy loss in heavy ion collisions [130].

The particlisation temperatures extracted from comparisons with hadronic data were

Tsw = 145 MeV at the LHC (Section 4.3) and Tsw = 165 MeV at RHIC (Section 4.4). For

hadrons, the dynamics of the medium from this point on was modelled with UrQMD, a

microscopic model of hadronic interactions. The same model cannot be used to investigate

the production of photons in this post-particlisation phase, since UrQMD does not handle

photon production through inelastic hadron collisions.

An alternative approach would be to extract a temperature, flow velocity and volume

distribution from UrQMD by coarse-graining, and to combine this spacetime profile with

thermal rates using Equation 5.4. Dilepton production in low energy nucleus collisions has

been studied previously with this technique [131, 132]. While this method of evaluating pho-

tons produced after particlisation is interesting, it presents significant technical challenges

that are beyond the scope of this work. On the other hand, a previous study found that the

temperature, flow and volume profiles obtained from this UrQMD coarse-graining procedure

are not too different from that of a hydrodynamical model, down to 100 − 110 MeV [133].

Since the temperature, flow and volume distributions are the main factors controlling the

production of thermal photons, evaluating post-particlisation photons by stopping the hy-

drodynamics at lower temperatures should provide a reasonable first-order estimate.

Based on the above, the hydrodynamics is stopped at 105 GeV, with thermal photons

emitted between Tsw and this lower temperature being considered an estimate of post-

particlisation photons. The importance on the final direct photon calculations of post-

particlisation photons is quantified in Section 7.3.1.

Many features of the direct photon calculation presented in this chapter are considerable

improvements over previous calculations. Photons have never been computed with a hydro-

dynamical model that include IP-Glasma initial conditions and second order hydrodynamical

equations with bulk viscosity. Previous calculations either used ideal hydrodynamics [134, 39]

or simpler initial conditions and hydrodynamical equations [38].
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Viscous corrections to the photon emission rates were previously included in Ref. [38],

but this previous calculation used a less complete rate for hadronic photons.

A further improvement of the present calculation is the evaluation of photon momentum

anisotropies following more closely the details of the experimental measurements. Many

features of the measurements of photon anisotropies have been overlooked in the past, leading

to confusion in the evaluation of photon anisotropies from hydrodynamical simulations. This

is the topic of the next section.

7.2 Evaluation of the direct photon vn for comparison

with data

Two direct photon observables have been measured at RHIC and the LHC: the pT differential

spectrum and anisotropic flow coefficients v2, both at midrapidity.

The direct photon spectrum has a simple experimental definition and is straightforward

to evaluate from hydrodynamical calculations. This is not true for the vn coefficients, which

is not a simple measurements and which in consequence must be evaluated theoretically with

care.

The anisotropy coefficient vn of a single event is defined in Equation 1.3. It can also be

written in complex notation as

vsne
inΨsn =

∫
dpTdydφpT

[
E d3Ns

d3p

]
einφ∫

dpTdydφpT

[
E d3Ns

d3p

] (7.1)

where s denote the particle species. While Equation 1.3 assumed that vn was defined for a

narrow bin in pT and y, such that vn = vn(pT , y), it is also possible to define vn integrated

over a bin in transverse momentum and rapidity. Equation 7.1 provides a general definition

for vn in such cases.

As explained previously in this thesis (Section 2.2), the hadron vn of a single event cannot

be measured, but measurements of azimuthal correlations between hadrons, averaged over

multiple events, can be related to the hadronic vn and Ψn . This applies to photons as well.

Due to the low number of measured photons, the photon momentum anisotropy is not

measured as a photon-photon correlation, but rather as a photon-hadron correlation. For the

photon vn measurements currently available, the event-plane method was used to measure

this photon-hadron correlation. This method can be understood as using hadrons to define

an effective plane in the transverse direction, based on their azimuthal distribution, with

photons then measured with respect to this hadronic plane. However, depending on the
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number of hadrons being measured and on the size of their azimuthal momentum anisotropy,

the hadronic event-plane cannot necessarily be reconstructed accurately. Because of this, it

is not possible to provide an unambiguous mapping of event-plane method measurement to

the vn and Ψn of photons and hadrons [54, Section 2].

There are however two known limits, the low and high resolution limits, which typically

do not differ by more than 10% [54, Section 2]. In the low resolution limit, the event-plane

anisotropy reduces to the two-particle cumulant (also called the scalar product v2{SP})
anisotropy [54, Section 2]:

vn{EP} ≈ vn{2} =
〈vγnvhn cos(n(Ψγ

n −Ψh
n))〉√

〈(vhn)2〉
(7.2)

The other limit is the high resolution limit:

vn{EP} ≈ 〈vγn cos(n(Ψγ
n −Ψh

n))〉 (7.3)

The “resolution correction”, which quantifies the accuracy of the event-plane reconstruc-

tion, is used to determine which limit is closer to event-plane measurements. The resolution

corrections for both RHIC and LHC measurements are shown respectively in Refs. [99, Sec-

tion 4.2.2] and [98, Section 9.1.2]. The value of the resolution correction changes with the

centrality and methods used to determine the event-plane, and for n = 2 (v2{EP}), is

neither clearly in the high nor low resolution limit. On the other hand, higher harmonics

(n > 2) have systematically lower resolution corrections, and are closer to the low resolution

limit. The low resolution limit, vn{EP} ≈ vn{2} ≡ vn{SP}, is thus used in this work. It is

verified at the end of this section that the low and high resolution limits indeed only differ

by approximately 10%. The uncertainty associated with this ambiguity in vn{EP} is thus

not a significant issue.

The event-plane method has been superseded by other methods for hadronic anisotropy

measurements, methods such as the two-particle cumulants v2{2} mentioned at the end of

Section 2.2. It is likely that future photon measurements will also be measured with the two-

particle cumulant method, which is an additional incentive to use the limit vn{EP} ≈ vn{2}.
In the meantime, the uncertainty intrinsic to the current measurements is treated as a

theoretical uncertainty.

The experimental measurements correlate hadrons from a wide bin in pT to photons

measured in a small pT bin, effectively resulting in a vγn{EP} differential in the photon

transverse momentum:

vγn{EP}(p
γ
T ) ≈ 〈v

γ
n(pγT )vhn cos(n(Ψγ

n(pγT )−Ψh
n))〉√

〈(vhn)2〉
(7.4)
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Equation 7.4 assumes that the events that are averaged over have small multiplicity

fluctuations. That is, all events are assumed to produce a similar number of photons and

hadrons. If large multiplicity fluctuations are present, Equation 7.4 will take a different form

depending of the details of the measurement, for example whether all events are treated

equally, or if events with more hadrons and photons are given a larger weight in the event-

average.

To reduce the importance of multiplicity fluctuations, experimental collaborations first

measure Equation 7.4 in small centrality bins [98, Chapter 9]. The anisotropy measurements

from these smaller centrality bins are then recombined into a larger centrality to reduce the

statistical uncertainty of the measurement. When the small centrality bins are recombined,

each centrality is weighted by the number of photons measured in the centrality [98, Chapter

9]:

vγn{EP}[cmin, cmax] =

∑
c∈[cmin,cmax] v

γ
n{EP}[c]N [c]∑

c∈[cmin,cmax] N [c]
(7.5)

where N [c] is the number of photons measured in centrality c, vγn{EP}[c] is the momentum

anisotropy measured in c and [cmin, cmax] is the final (large) centrality class in which the

measurement is reported. At the LHC the sub-bins are [98, Chapter 9] 0 − 5%, 5 − 10%,

10− 20%, 20− 30% and 30− 40%, while 10% bins are used at RHIC [99].

The quantity vγn{EP}[cmin, cmax] (Equation 7.5) is the one that should be compared to

PHENIX and ALICE measurements.

7.2.1 Simplifications

With reasonable approximations, it is possible to simplify Equation 7.5 considerably. Nu-

merical values from hadron and direct photon production computed in the hydrodynamical

model presented in this thesis, for Pb-Pb collisions at
√
sNN = 2.76 TeV, are used to sup-

port the approximations. The simplifications are restricted to the second order coefficients,

vγ2{EP}[cmin, cmax].

Event-planes The first approximation used is that the event-plane angles of direct pho-

tons and hadrons are usually close to each other: Ψγ
2(pT ) ≈ Ψh

2 . This is confirmed very

nicely by evaluating
〈
cos(2(Ψγ

2(pγT )−Ψh
2))
〉
, shown on Figure 7.1. The value is essentially 1,

allowing vγ2{EP}(p
γ
T ) to be written

vγ2{EP}(p
γ
T ) ≈ 〈v

γ
2 (pγT )vh2 〉√
〈(vh2 )2〉

(7.6)
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Figure 7.1: Correlation between the hadronic and photonic event-plane Ψ2 as expressed by〈
cos(n(Ψγ

n(pγT )−Ψh
n))
〉

in Pb-Pb collisions at
√
sNN = 2.76 TeV in 10− 20% centrality.

Anisotropy correlations A further simplification can be obtained from the observa-

tions that the v2 of photons and hadrons are correlated within each event. As seen in the

introduction, the anisotropy of hadrons is a result of the initial anisotropy of the matter

deposited in heavy ion collisions (see e.g. Figure 1.5). The same is true for thermal pho-

tons, whose momentum anisotropy also results from the flow anisotropies developed in the

hydrodynamical expansion. Since thermal photons are the dominant source of momentum

anisotropy in direct photons, it is reasonable to expect vγ2 (pγT ) and vh2 to be related. This can

be verified numerically, which is shown on Figure 7.2 for different values of pγT . It is appar-

ent from Figure 7.2 that vγ2 (pγT ) ∝ vh2 is a fairly good approximation at lower pγT , although

deviations are visible at higher pγT .

Using vγ2 (pγT ) ∝ vh2 , vγ2{EP}(p
γ
T ) reduces to

vγ2{EP}(p
γ
T ) ≈

√
〈(vγ2 (pγT ))2〉 (7.7)

This approximation, together with the previous approximation that Ψγ
2(pT ) ≈ Ψh

2 , thus

allows to remove all dependence of vγ2{EP}(p
γ
T ) on hadronic quantities.

Photon multiplicity weighting Finally, the weighting procedure from Equation 7.5

should be reasonably well-approximated by weighting each event with its own photon mul-

tiplicity, rather than the multiplicity of the sub-centrality class c. This assumptions yields:

vγn{EP}[cmin, cmax](p
γ
T ) ≈

√√√√√
〈(

1
2πpT

dNγ

dpT

)
(vγ2 (pγT ))2

〉
〈

1
2πpT

dNγ

dpT

〉 (7.8)
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Figure 7.2: Distribution of photon vγ2 (pT ) and pT -integrated charged hadrons vhn for ∼ 240
Pb-Pb collisions at

√
sNN = 2.76 TeV in 0 − 40% centrality for (a) pγT = 0.6 GeV (b)

pγT = 1.8 GeV and (c) pγT = 3.0 GeV.

Equation 7.8 has the considerable benefit of not depending on the details of the sub-

binning of the final centrality class.

A comparison of the different simplified vγn{EP}[cmin, cmax](p
γ
T ) proposed in this section

is shown on Figure 7.3a. The anisotropy computed from Equation 7.5 is labeled “Exact”,

while the other curves correspond to

• Equation 7.5 with vγn{EP}[c] from Equation 7.6 (labelled “Ψγ
2 ≈ Ψh

2”)

• Equation 7.5 with vγn{EP}[c] from Equation 7.7 (labelled “Ψγ
2 ≈ Ψh

2 & vγ2 ∝ vh2 ”)

• Equation 7.8 (labelled “Ψγ
2 ≈ Ψh

2 & vγ2 ∝ vh2 & event multiplicity weight“)

It is clear from Figure 7.3a that the only approximation that is not fully justified is to ap-

proximate the per-centrality photon multiplicity weight with a per-event one (Equation 7.8),

although it remains a reasonable approximation.

It is important to clarify that, although the simplifications made in this section appear

justified for the direct photon signal predicted in this thesis, it might not be the case if direct

photons are not dominated by thermal photons. For example, if it turns out that some non-

thermal photon source is found to contribute significantly to both the direct photon spectrum

and the momentum anisotropy, the assumptions that Ψγ
2(pT ) ≈ Ψh

2 and vγ2 (pγT ) ∝ vh2 would

most likely not hold. Then the simplifications made above would break down. This has

to be kept in mind when more exotic sources of direct photons are being investigated. For

completeness, a comparison of the two limits of vγ2{EP}, v
γ
2{2} and 〈vγ2 cos(n(Ψγ

2 − Ψh
2))〉,

is shown on Figure 7.3b. As expected, the effect is around 10%.
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Figure 7.3: (a) Direct photons anisotropies computed with different methods (see text) (b)
Difference between the two limits of the event-plane anisotropy, v2{SP} and 〈vγ2 cos(n(Ψγ

2 −
Ψh

2))〉. For Pb-Pb collisions at
√
sNN = 2.76 TeV in 0− 40% centrality.

With the clarifications from this section on the proper way of evaluation the direct pho-

ton anisotropy, comparisons with measurements can now be considered. Direct photons

calculations at the LHC are presented in the next section.

7.3 LHC

The direct photon spectrum and v2 in Pb-Pb collisions at
√
sNN = 2760 GeV is presented

on Figure 7.4. The photon anisotropy was evaluated with Equation 7.5. The calculations

are compared with preliminary measurements from the ALICE collaboration [17, 135, 98].

The three sources of direct photon considered in this work — thermal, prompt and non-

cocktail — are shown separately on Figure 7.4a. Their sum is labelled “Direct”. Thermal

photons are the dominant source of direct photons below pγT = 2.5 GeV. At very low pT ,

thermal and prompt photons are again of the same size, but the unknown reliability of the

prompt photon calculation has to be kept in mind at such low momenta (see Appendix A).

A different breakdown of the three photon sources is shown for v2 on Figure 7.4b, to

emphasize that thermal photons carry essentially all the momentum anisotropy. The large

thermal photon v2 is diluted by the prompt photons, which carry no v2 at all in the present

calculation. The addition of non-cocktail contributions to the thermal and the prompt
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Figure 7.4: (a) Direct photon spectrum and (b) direct photon v2 for Pb-Pb collisions at√
sNN = 2.76 TeV for 0-40% centrality. The shaded bands represent the statistical uncer-

tainty on direct photons. Statistical and systematic uncertainties on the data are represented
by bars and boxes, respectively.

photons is a small effect, but is shown for completeness.

Despite the significant contribution of thermal photons, the direct photon spectrum and

v2 are on the lower side of the data. Both calculations are nevertheless within the combined

statistical and systematic uncertainties in many pT bins.

In what follows, various features of the model are investigated to help understand the

uncertainties entering the evaluation of thermal photons.

7.3.1 Post-particlisation dynamics

The calculation shown on Figure 7.4 includes photons down to Tsw = 105 MeV. The par-

ticlisation temperature favored by hadronic observables at the LHC is Tsw = 145 MeV,

and past this point, the dynamics of hadrons was handled by a kinetic theory simulation

(UrQMD). The same post-particlisation model cannot be used to compute photons pro-

duced in this phase, and another approach must be used. As explained in Section 7.1, post-

particlisation photons are estimated in this work by letting the hydrodynamical model run

past Tsw = 145 MeV, down to Tsw = 105 MeV. As mentioned previously, in this temperature

range, comparisons of temperature and volume profiles of coarse-grained UrQMD simula-

tions and hydrodynamical models were shown to be reasonably similar to each other [133],

97



10-3

10-2

10-1

100

101

102

 0  0.5  1  1.5  2  2.5  3

1
/(

2
π

p
T
) 

d
N
γ
/d

p
T
 (

G
e

V
-2

)

pT (GeV)

Pb-Pb 0-40%
√s=2.76 TeV

Direct photons

ALICE (prelim)
T=105 MeV
T=145 MeV

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0  0.5  1  1.5  2  2.5  3

v 2
γ
{S

P
}

pT (GeV)

Pb-Pb 0-40%
√s=2.76 TeV

Direct photonsALICE (prelim)
T=105 MeV
T=145 MeV

(b)

Figure 7.5: Effect on (a) the direct photon spectrum and (b) the direct photon v2 of including
thermal photons down to T = 105 MeV.

supporting the idea that post-particlisation photons can be estimated by extending the hy-

drodynamical evolution to lower temperatures.

Since photons produced between 145 and 105 MeV are an estimate, it is relevant to

quantify their contribution to the final calculations shown on Figure 7.4. This is shown

on Figure 7.5. The effect of post-particlisation photons on the spectra, Figure 7.5a, is

between 10 and 20%, which is barely visible on the figure. On the other hand, vγ2 gets a

significant contribution from post-particlisation photons, as shown on Figure 7.5b, from a

∼ 30% increase at low pT to ∼ 50% increase at high pT . To understand how a 10 − 20%

increase in the direct photon spectrum can lead to a much larger increase in the v2, it is

necessary to take a closer look at the dynamics of heavy ion collisions, and at the relation

between photon production and the spacetime profile of the medium.

Time and temperature Since the QGP created in heavy ion collisions expands in a

vacuum, the temperature drops essentially monotonically with “time” τ . While there is a

distribution of high and low temperatures even at the earliest time, high temperatures are

found at earlier times. Temperature is thus a good proxy for τ : lower average temperatures

mean larger τ . Post-particlisation photons are thus mainly produced at late times.
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Figure 7.6: (a) |ux/y|/uτ averaged over events as a function of temperature (b) Thermal
photon anisotropy vγ,thn {EP}(Ti) as a function of pγT for different temperature cuts.

Flow velocity anisotropies Like hadrons, the thermal photon v2 is essentially a re-

flection of the flow anisotropy that develops in heavy ion collisions due to the anisotropic

initial energy deposition. This flow anisotropy grows larger and larger as the hydrody-

namical evolution progresses, until lower pressure gradients and viscous effects slowly re-

duce this anisotropy. This is illustrated on Figure 7.6a by plotting the event-average of

|ux/y|/uτ = |ux/y|/
√

1 + u2
x + u2

y for different temperature cuts.

When the hydrodynamical simulation is started, the only flow present is that from the IP-

Glasma initial conditions, which is symmetric on average. The ux/y anisotropy grows larger

with decreasing temperatures (later times). The eventual saturation and decline of the flow

anisotropy is noticeable form the fact that the ux/y asymmetry of the lowest temperature

cut (100 − 150 MeV) is visibly smaller than that of the preceding temperature bin (150 −
200 MeV).

Anisotropy of thermal photons emitted from specific temperature regions

The magnitude of the v2 of thermal photons originating from different regions of temperature

can be investigated by computing the v2 for different temperature cuts separately. Due to

the complicated form of Equation 7.5, this temperature slicing is not trivial. To make the
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problem tractable, a simpler definition of vn{EP} is used:

vγ,thn {EP} ≈

〈(
1

2πpT

dN
dpT

)
vγnv

h
n

〉
〈

1
2πpT

dN
dpT

〉√
〈(vhn)2〉

(7.9)

which is similar to Equation 7.8 except that the approximation vhn ∝ vγn was not made.

Because of this different definition of vn{EP}, the results that follow will differ slightly with

those presented before this point.

The fully differential thermal photon spectrum can be divided in contributions coming

from different temperature ranges

1

2πpT

d2N

dpTdφ
=
∑
Ti

1

2πpT

d2N(Ti)

dpTdφ
(7.10)

where Ti stands for a choice of temperature cut.

Defining vγn(Ti) as the vn of 1/(2πpT )d2N(Ti)/dpTdφ and assuming that the event-plane

Ψγ
n is similar for all temperatures, it is straightforward to show that(

1

2πpT

dN

dpT

)
vγn =

∑
Ti

(
1

2πpT

d2N(Ti)

dpT

)
vγn(Ti) (7.11)

This can be used to rewrite Equation 7.9 as

vγ,thn {EP} ≈
∑
Ti

〈
1

2πpT

d2N(Ti)
dpT

〉
〈

1
2πpT

dN
dpT

〉
〈(

1
2πpT

d2N(Ti)
dpT

)
vγn(Ti)v

h
n

〉
(

1
2πpT

d2N(Ti)
dpT

)√
〈(vhn)2〉

(7.12)

≈
∑
Ti

〈
1

2πpT

d2N(Ti)
dpT

〉
〈

1
2πpT

dN
dpT

〉 vγ,thn {EP}(Ti) (7.13)

The momentum anisotropy of thermal photons emitted in a given range of temperature is

thus vγ,thn {EP}(Ti), and their total momentum anisotropy is a sum of the vγ,thn {EP}(Ti) of

all temperature slices, weighted by each slice’s contribution to the thermal photon spectrum.

Returning to Figure 7.6a, since the flow velocity anisotropy is larger at lower temperature,

vγ,thn {EP}(Ti) should be as well. The negligible flow anisotropy at high temperature should

result in a very small vγ,thn {EP}(Ti). This result is illustrated on Figure 7.6b. Indeed,

thermal photons produced at low temperature have a very large v2, while thermal photons

produced at high temperature barely have any v2.

100



10-4

10-3

10-2

10-1

100

101

102

 0  0.5  1  1.5  2  2.5  3

1
/(

2
π

p
T
) 

d
N
γ
/d

p
T
 (

G
e

V
-2

)

pT (GeV)

Pb-Pb 0-40%
√s=2.76 TeV

T>350 MeV
200 < T < 350 MeV
150 < T < 200 MeV
100 < T < 150 MeV

Thermal

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0  0.5  1  1.5  2  2.5  3

v 2
γ
{S

P
}

pT (GeV)

Pb-Pb 0-40%
√s=2.76 TeV

T>350 MeV
200 < T < 350 MeV
150 < T < 200 MeV
100 < T < 150 MeV
Thermal

(b)

Figure 7.7: (a) Contribution to the thermal photon spectrum of different ranges of medium
temperature (b) Weighted thermal photon vn for different temperature cuts, as defined in
Equations 7.14 and 7.15. On both figures, the curve labeled “Thermal” is the total thermal
photon result, obtained by summing up the contribution of the four different temperature
cuts.

Weighted thermal photon anisotropies While low temperature photons have a

large momentum anisotropy and definitively contribute to raise the total thermal photon

vγ,th2 {EP}, it is not possible to tell from Figure 7.6b if they have a large contribution to the

total thermal photon v2: this depends on the amount of photons produced at low tempera-

tures.

To clarify this, Equation 7.13 is rewritten

vγ,thn {EP} ≈
∑
Ti

vγ,th,weighted
n {EP}(Ti) (7.14)

with

vγ,th,weighted
n {EP}(Ti) =

〈
1

2πpT

d2N(Ti)
dpT

〉
〈

1
2πpT

dN
dpT

〉 vγ,thn {EP}(Ti) (7.15)

The weighted vγ,th,weighted
n {EP}(Ti) is plotted on Figure 7.7b for four temperature cuts

that cover the entire temperature profile: 100 < T < 150 MeV, 150 < T < 200 MeV,

200 < T < 350 MeV and T > 350 MeV. These temperature cuts were chosen so that the

contribution of each one to the thermal photon spectrum were approximately of the same
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order, which can be seen on Figure 7.7a, where 1/(2πpT )d2N(Ti)/dpT is plotted for each

temperature cut.

What is clear from Figure 7.7a is that photons produced in the highest temperature

regions of the medium contribute significantly to thermal photons at high pγT but are com-

pletely sub-dominant at lower pT . A large portion of low pT photons are actually produced

at temperatures lower than 200 MeV.

Since thermal photons emitted from high temperature regions have a very small vγ,thn {EP}(Ti)
(c.f. Figure 7.6b), they barely contribute to the total photon anisotropy, as seen on Fig-

ure 7.7b.

The important message conveyed by Figure 7.7a and Figure 7.7b is that almost all the

momentum anisotropy and a good portion of the spectra of thermal photons originate from

the low temperature regions of the medium. It is thus no surprise that post-particlisation

thermal photons contribute so much to the direct photon anisotropy.

The overall conclusion of the above is that in view of the large contribution of post-

particlisation photons to the direct photon spectrum and v2, a more sophisticated evaluation

of their contribution using e.g. a kinetic theory approach might be necessary. Whether this

improved treatment of post-particlisation photons would increase or decrease the photon

spectrum or v2 has yet to be determined.

7.3.2 Photon production rates

Thermal photons are determined by the spacetime description of the medium and the photon

emission rates used for this medium. A simple explanation for the underestimated spectrum

and v2 shown on Figure 7.4 is that the thermal rates are too low. For example, a factor

of two increase in the thermal rates corresponds directly to a factor of two increase in the

contribution of thermal photons to the direct photon spectrum. This doubling of the thermal

rate would not change at all the thermal photon v2 shown on Figure 7.4b, but it would pull

the direct photon v2 — which is a weighted average of the different photon sources — toward

the thermal photon v2, which is larger.

As seen in Section 5.3, there still are significant uncertainties in the evaluation of thermal

photon rates, notwithstanding additional subtleties from viscous corrections to these rates.

The effect on direct photons of some of these uncertainties are highlighted in what follows.

QGP to hadronic rate transition The first uncertainty that can be quantified is the

temperature chosen to switch from the QGP photon rate to the hadronic photon rate. The

above results used Ttr = 180 MeV. As shown on Figure 5.3, the rates used as reference in this

thesis — QGP LO at high temperature and hadronic rate from Refs. [112, 113, 114] at low
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Figure 7.8: Effect on the direct photon (a) spectrum and (b) v2 of varying the temperature
at which the QGP LO photon rate is switched to the hadronic photon rate from Refs. [112,
113, 114].

T — are fairly similar in the temperature range where one expects quark and gluon degrees

of freedom to transition of hadronic ones. It is nevertheless instructive to see the effect of

changing Ttr from 160 to 200 MeV, which is shown for the spectrum and v2 on Figure 7.8.

The effect on the direct photon spectrum (Figure 7.8a) is small. The effect of Ttr is also

small at low pT on the photon v2. On the other hand, for pT > 1.5 GeV, varying Ttr by

40 MeV has a large effect on v2. This can be understood from the fact that the QGP rate is

in general larger than the hadron gas rate in this range of temperature explored for Ttr. The

consequence is that using the QGP rate down to lower temperatures produces more photons

— photons which were shown in the previous section to have a large momentum anisotropy.

A lower Ttr thus increases the direct photon v2, while the opposite happens if Ttr goes from

180 to 200 MeV.

Viscous corrections to the emission rates Another uncertainty in the rates is the

effect of viscosity on photon emission. As summarized in Table 7.1, the effect of viscosity has

only been evaluated for a subset of emission rates. To quantify the uncertainty introduced

by this partial correction of the photon emission rates, the effect of bulk and shear viscosity

on the emission rates is turned off one after the other on Figure 7.9.

From Figure 7.9, the effect of viscosity appears to be fairly modest, except on v2 at high
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Figure 7.9: Effect of viscous corrections to the photon emission rates on the direct photon
(a) spectrum and (b) v2.

pT . The rates for which the viscous corrections are currently included represent approxi-

mately half of the total photon emission rate1. Assuming that the viscous corrections to

the uncorrected rates are of the same order as the corrections currently available, it can be

concluded from Figure 7.9 that the missing viscous corrections represent at least a 20− 30%

uncertainty on the direct photon v2 at pT & 2 GeV.

The effect of viscous corrections to the rates are small for the direct photon spectrum.

This can be understood from the fact that viscous corrections are larger at higher pT , where

the thermal photon signal is increasingly eclipsed by prompt photons.

Even with the knowledge that Figure 7.9 is only a partial reflection of the effect of viscosity

on photon emission — due to the missing corrections — it is still difficult to fully realise the

importance of viscous corrections from that figure. To remedy this, Figure 7.9 is reproduced

by using only equilibrium thermal rates for which viscous corrections are available. This

restricts the rates to the QGP 2 → 2 rates and photons produced by light mesons. The

result is shown on Figure 7.10.

Although the spectrum (Figure 7.10a) still shows no significant dependence on viscous

corrections, the v2 (Figure 7.10b) is shown to be suppressed considerably by viscous cor-

rections to the rates. The lesson that must be drawn from Figure 7.10 is that quantitative

1 The 2 → 2 QGP photon rates is approximately of the same order as the QGP bremsstrahlung contri-
bution. Similarly, the photon emission rate from light mesons is roughly half the total hadronic rates.
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Figure 7.10: Effect of viscous corrections to the photon emission rates on the direct photons
if the only equilibrium rates included are those for which viscous corrections are available
(i.e. photons from QGP 2 → 2 and from light mesons). The spectrum is (a) and the v2 is
(b).

comparisons with data require not only a good knowledge of photon emission rates from the

QGP, but also from the effect of viscosity on these rates.

Other thermal rates A final estimate of the uncertainty in photon rates can be pro-

vided by using different thermal photon rates. The fact that there are still considerable

uncertainties in the equilibrium photon emission rates from QCD matter was highlighted in

Section 5.3. Up to this point in this analysis, the photon rates used were the QGP LO rates

for T > 180 MeV and the hadronic rates from Refs. [112, 113, 114] below that temperature.

However other rates were presented in Section 5.3 and using them instead of the above rates

is a simple way of estimating the effect on direct photons of the difference between these

rates. Since viscous corrections have not been evaluated for these rates, the comparisons in

what follows are made without viscous corrections to any of the rates.

The semi-QGP rate from Ref. [111] was shown on Figure 5.2a while the hadron gas rate

from Dusling and Zahed (Ref. [115]) was shown on Figure 5.2b. The result of making the

direct photon spectrum and v2 calculation with these rates is shown on Figure 7.11. As it

could be expected, using the semi-QGP rate suppresses the direct photon spectrum consider-

ably, while using the hadronic rate from Ref. [115] increases it. Moreover, the hadronic rate
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Figure 7.11: Direct photon (a) spectra and (b) v2 evaluated with either i) the QGP LO rate
and the hadronic rate from Refs. [112, 113, 114] (labeled “Rapp HG”) ii) the semi-QGP rate
and the hadronic rate from Refs. [112, 113, 114] iii) the QGP LO rate with the hadronic rate
from Ref. [115] (labeled “Zahed-Dusling”).

from Ref. [115] results in a much larger photon v2, in better agreement with measurements.

The effect of the semi-QGP rate on the photon v2 is more subtle, since there is a competi-

tion between two effects. On one hand, a lower QGP rate increases the total thermal photon

v2, since photons produced at high temperatures have a smaller v2 than those produced at

low temperatures (c.f. Figure 7.6b). On the other hand, while the thermal v2 is increased

by suppressing the QGP rate, the thermal photon spectrum necessarily decreases as well,

which is clear from the spectrum (Figure 7.11a). The smaller the thermal photon spectrum

is with respect to prompt photons, the smaller is the final direct photon v2, since it pulls the

v2 towards that of the prompt photons, which is zero in the present case.

In the end, the overall effect of the semi-QGP on the direct photon v2 is fairly small, in

particular in view of the large suppression the rate brought to the spectrum. It is due to

the two effects just described largely canceling each other. This is a good reminder of the

complementarity of the photon spectrum and v2 as observables.

On a last note, it is important to remember that the dependence on the Ttr shown at the

beginning of this section would be significantly different for the results shown on Figure 7.11

than what was seen on Figure 7.8. For example, the semi-QGP rate and the hadronic rate

from Refs. [112, 113, 114] are very different at Ttr = 180 MeV, and changing Ttr to a lower
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Figure 7.12: (a) Event-average 〈dV4/dy〉T as defined by Equation 7.16 (error bars indicate
the variance from the event-average) (b) Event-average 〈uτ 〉T as defined by Equation 7.17
(event-by-event variance not shown for clarity). For hydrodynamical model with and without
bulk viscosity.

or higher value would change significantly the results shown on Figure 7.11.

The conclusion of this subsection is that progress in understanding direct photon mea-

surements are significantly dependent on improvements in the understanding of thermal

emission rates.

7.3.3 Effect of bulk viscosity

The effect of bulk viscosity on hadronic observables was investigated in Section 4.3.1. It

was concluded that the presence of bulk viscosity, with a temperature-dependence given by

Figure 4.1, brought a considerable improvement to the description of the average transverse

momentum of hadrons. Moreover the introduction of bulk viscosity was found to have a

considerable effect on the extraction of the shear viscosity η from hadronic measurements.

As this work is the first to compute direct photons with a hydrodynamical model that

includes bulk viscosity, it is important to quantify its effect. This will allow to make con-

nection with previous calculations that do not include bulk viscosity, and also to understand

the part played by bulk in thermal photon production.
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Spacetime volume and flow profile Photon production is primarily affected by

changes in the flow and temperature profile of the modelled quark-gluon plasma. The effect

of bulk viscosity on the temperature profile can be quantified by computing the spacetime

volume of the medium for different temperature cuts, averaged over events:〈
dV4

dy

〉
T

=
1

Nevents

∑
events

1

dy

∫
d4xΘ(Tmin < T (x) < Tmax) (7.16)

The result is differential in rapidity since the volume is infinite in the longitudinal direction

(the hydrodynamical model is 2 + 1D). Averaging over events permits to determine if there

are significant fluctuations of this quantity between the different events in the centrality

class.

Similarly, the event-averaged flow can be quantified with uτ =
√

1 + (ux)2 + (uy)2:

〈uτ 〉T =

∑
events

∫
d4xuτ (x)Θ(Tmin < T (x) < Tmax)∑

events

∫
d4xΘ(Tmin < T (x) < Tmax)

(7.17)

The spacetime volume is shown on Figure 7.12a and 〈uτ 〉 on Figure 7.12b, for a hydro-

dynamical evolution with and without bulk viscosity.

Bulk viscosity increases the spacetime volume at low temperature by approximately 50%

for T < 200 MeV, but does not affect significantly the temperature distribution above

200 MeV. This is in line with the temperature dependence used for the bulk viscosity (Fig-

ure 4.1), which is sharply peaked at T = 180 MeV but is very small away from this peak.

On the other hand, a significant decrease in the flow velocity (Figure 7.12b) due to the

introduction of bulk viscosity is observed for the same temperature range where the spacetime

volume increase is observed. Bulk viscosity is understood to act as a resistance to expansion

or compression. Since heavy ion collisions are mostly dominated by an expansion phase, the

bulk viscous pressure is mostly negative, slowing down the expansion of the medium.

Effect on direct photons A larger spacetime volume is almost invariably associated

with a larger number of produced photons. The flow does affect the momentum distribution

of the photons, but not their number, up to bulk viscosity effects on the photon rates.

If the effect of viscosity on photon rates is ignored, the number of photons is actually

totally invariant under the flow profile. This is shown on Figure 7.13a by plotting the

multiplicity per volume for the photon computed from the hydrodynamical model with and

without bulk viscosity. The multiplicity is obtained by integrating the photon spectrum

above pT = 0.05 GeV. As expected, at equal volumes, the change in flow velocity due to the

introduction of bulk viscosity does not affect the number of photons produced in heavy ion
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Figure 7.13: Effect of bulk viscosity on (a) the direct photon multiplicity per spacetime
volume (b) the direct photon spectrum per spacetime volume.

collisions.

The effect of the flow velocity on the thermal photon spectrum can be seen from Fig-

ure 7.13b. Once again, the effect of the different volumes was removed by considering the

photon spectrum per volume.

The reduction of the flow velocity induced by bulk viscosity in the low temperature region

of the medium translates into a softer thermal photon spectrum at low temperatures: slightly

more photons are produced at low pT and significantly less are produced at high pT . If the

effect of bulk viscosity on photon emission is taken into account, the above conclusions remain

the same since the effect of viscosity is to decrease further the thermal photon spectrum at

high pT , an effect previously seen on Figure 7.9b.

Overall effect of bulk viscosity Comparing the overall effect of bulk viscosity on

direct photons is not straightforward, since calculations with and without bulk viscosity

require different hydrodynamical parameters to describe hadronic observables. Two alter-

natives are shown on Figure 7.14. In the first case, the hydrodynamical models with and

without bulk viscosity uses the same parameters (η/s, Tsw, ...) and bulk viscosity is simply

turned off in the shear-only case. In the second case, η/s is readjusted after bulk viscosity

is turned off so that the integrated hadron vn are still reproduced by the hydrodynamical

model without bulk viscosity (c.f Figure 4.4). In both cases, it can be seen that the overall
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Figure 7.14: Overall effect of bulk viscosity on the direct photon (a) spectrum and (b) v2.

effect of bulk viscosity is not very large, in particular compared to the uncertainties related to

the photon emission rates explored in the previous section. As expected from the preceding

discussion, the combination of larger spacetime volume and softer thermal spectrum results

in a net gain in the photon v2 at low pT , although the photon v2 is reduced at higher pT .

While the overall effect of bulk viscosity on direct photons is modest — a small increase

a low pT and a moderate decrease at high pT — it does change significantly the shape of

the direct photon v2. This is a very interesting observation. With improved measurements

and lower theoretical uncertainties, this finding could be used to provide constraints on the

shear and bulk viscosities of the quark-gluon plasma.

With this closing remark on the effect of bulk at the LHC, comparisons of direct photons

with RHIC measurements are presented in the next section.

7.4 RHIC

The direct photon spectrum and v2 were also measured at RHIC by the PHENIX collabora-

tion [29, 30, 136]. These measurements were made in Au-Au collisions at
√
sNN = 200 GeV

for centralities 0-20% and 20-40%. Comparison of the hydrodynamical model’s prediction

for direct photons is shown on Figure 7.15.

The photon anisotropy is compared with the preliminary measurements from Ref. [136]
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Figure 7.15: Direct photon spectra for (a) 0−20% centrality (b) 20−40% centrality and direct
photon v2 for (c) 0−20% centrality (d) 20−40%. For Au-Au collisions at

√
sNN = 200 GeV.

rather than the older measurements from Ref. [30]. The rationale is that the preliminary

measurements are consistent with the older ones, but go to much lower transverse momentum

and have smaller uncertainties. Showing both would make the figures difficult to read.

Unlike at the LHC, measurements at RHIC are available for pT smaller than 1 GeV. As

explained in Section 5.2 and Appendix A, the perturbative QCD calculation used in this

thesis to evaluate prompt photons appears to be reliable for photon transverse momenta

larger than pT ∼ 1− 1.5 GeV. In what follows, the direct photon calculations are compared
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Figure 7.16: Effect on (a) the direct photon spectrum and (b) the direct photon v2 of
including thermal photons down to T = 105 MeV as opposed to T = 165 MeV; Effect
of viscous corrections to the photon emission rates on the direct photon (c) spectrum and
(d) v2; (e) (f) Same as Figure 7.11. For Au-Au collisions at

√
sNN = 200 GeV, 20 − 40%

centrality.
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with RHIC data over the whole pT range covered by the measurements. The limited reliability

of the prompt photon results — and consequently of the direct photon calculations — in the

low pT region should be kept in mind.

For both centralities, the agreement with the spectrum is similar to what was seen at the

LHC: the direct photon calculation tends to underestimate the measured spectrum, but is

fairly close to the lower uncertainties. The agreement appears to be slightly better for 0−20%

centrality than 20 − 40%. The same is true for the v2, where the calculation is in general

within the combined lower uncertainties in 0−20% but is farther from the measurements for

20 − 40%. Overall, the agreement with measurements at the LHC was slightly better than

the current results at RHIC.

It is relevant to verify the effect on direct photon calculations at RHIC of some of the

uncertainties investigated in the previous section for LHC calculations. The effect of the

post-particlisation photons is shown on Figures 7.16a and 7.16b, while the effect of viscosity

corrections to the rates is shown on Figures 7.16c and 7.16d. Finally, the effect of using

different thermal photon rates is shown on Figures 7.16e and 7.16f. All of this is shown for

20− 40% centrality. In all cases, the effect are in line with what was observed at the LHC.

It is not clear at the moment why agreement with data is better for 0-20% centrality than

20-40% at RHIC, nor why it is better at the LHC than RHIC. Post-particlisation photons

could be at the origin of this pattern: post-particlisation dynamics is expected to be more

important in lower energy collisions and in more peripheral centralities. It is thus possible

that a more sophisticated treatment of photon production in the latter phase of the collisions

could explain the differences observed between RHIC centralities, and between RHIC and

the LHC.

7.5 Hydrodynamical model and direct photons: sum-

mary

The hydrodynamical model presented in Chapter 3 was shown in Chapter 4 to provide a good

description of hadronic observables. This same model was used in the present chapter to

compute direct photon production at RHIC and the LHC. The result of this direct photon

calculation was shown on Figure 7.4 for the LHC and on Figure 7.15 for RHIC. At both

colliders, comparisons with measurements showed similar features: calculations tend to be

lower than measurements, although often within systematic and statistical uncertainties.

Agreement with measurements was found to be better at the LHC than at RHIC.

Thermal photons were found to be considerably larger than prompt photons at the LHC
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(Figure 7.4) for transverse momenta between 1 and 2 GeV, with prompt photons becoming

the dominant source of direct photons at higher pT . At RHIC, thermal photons do not

show as strong of a dominance over prompt photons for pT ∼ 1 − 2 GeV (Figure 7.15),

although they remain the largest source of direct photons in this transverse momentum

range. The reliability of direct photon calculations below pT ∼ 1 GeV is currently limited

by the uncertainty in prompt photons at such low transverse momenta (see Appendix A).

Different sources of uncertainties in the thermal photon calculations were quantified both

for RHIC and the LHC. The importance of post-particlisation photons was shown on Fig-

ures 7.5a and 7.5b for the LHC and Figures 7.16a and 7.16b for RHIC. It was shown in

Section 7.3.1 that photons created at temperatures lower than 250 MeV carry most of the

momentum anisotropy of thermal photons at the LHC, providing further incentive to improve

the treatment of post-particlisation photons in the future.

Uncertainties in the photon emission rates were investigated in Section 7.3.2 for the LHC.

The importance of stronger theoretical constraints on the thermal photon emission rate and

on the effect of shear and bulk viscosities on the rate were highlighted. The effect of these

uncertainties were also shown at RHIC on Figures 7.16c, 7.16d, 7.16e and 7.16f.

Finally, the effect of bulk viscosity on direct photons was investigated at the LHC in

Section 7.3.3. The most notable feature is a change in the shape of the direct photon v2,

shown on Figure 7.14b: bulk viscosity increases the direct photon v2 at low pT and decreases

it at high pT .
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Part V

Conclusion
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In this thesis, the production of hadrons and photons in heavy ion collisions was stud-

ied at RHIC and the LHC using a modern hydrodynamical model of heavy ion collisions.

This comprehensive model included realistic initial conditions (IP-Glasma), second-order hy-

drodynamics equations with both shear and bulk viscosities, along with post-particlisation

dynamics of hadrons.

It was shown in Chapter 4 that a wide range of hadronic observables could be described

well by this hydrodynamical model. Bulk viscosity was found to be important to achieve a

good description of the hadronic spectra, in particular the average transverse momentum of

hadrons. It was also shown to have a large effect on the value of the shear viscosity of the

quark-gluon plasma extracted from comparison with measurements.

Future work on hadron production includes determining the level of constraint that

hadronic observables provides on bulk viscosity. It will be interesting to see the extent

to which the position (in temperature) of the peak in bulk viscosity, along with the peak’s

magnitude, can be constrained from the average transverse momentum of identified hadrons.

The production of direct photons was computed from the same hydrodynamical model,

and compared in Chapter 7 with spectra and v2 measurements from both RHIC and the LHC.

Direct photon calculations were found to be within or slightly below the large systematic and

statistical uncertainties of data. A series of uncertainties in the direct photon calculation

have been highlighted, indicating that additional theoretical investigations are necessary

before direct photon measurements can be said to be described or not by calculations from

hydrodynamical models.

A first important improvement will be a better description of the post-particlisation phase

of the collisions, where a large number of photons are produced. In this later phase of the

collision, an approach based on kinetic theory — which was shown to give good results for

hadrons in Chapter 4 — might be necessary for photons as well. Post-particlisation photons

contribute significantly to the photon momentum anisotropy, and quantifying them with

greater accuracy will strengthen considerably the predictions of the hydrodynamical model.

Calculations shown in Section 7.3.2 also highlighted the importance of increased theo-

retical constraints on the equilibrium photon rates in reducing the uncertainty on the direct

photon calculation. The evaluation of the effect of viscosity on these rates — as presented

for a subset of thermal rates in Chapter 6 — will also be necessary.

The presence of bulk viscosity in the hydrodynamical evolution produced a small effect

on the photon spectrum at the LHC, and a modest change in the overall magnitude of the

photon v2. On the other hand, it produced a clear change in the shape of v2, enhancing it

at low pγT and reducing it at higher pγT . While theoretical and experimental uncertainties do

not currently permit to determine if this change in the shape of v2 is favored by data, the
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reduction of both uncertainties in the future could make direct photons a good probe of the

bulk viscosity of quantum chromodynamics.

Important future work that was not addressed in this thesis is a more sophisticated treat-

ment of prompt photon production in heavy ion collisions, including both parton energy loss

and jet-medium photon production. The production of photons during the pre-thermalised

phase of the collisions will also be a part of the framework needing greater scrutiny.

Until at least preliminary investigations of the above improvements are undertaken, de-

termining if there still is a “direct photon puzzle” is difficult. On the other hand, the

calculations presented in this work show a much reduced tension with the available measure-

ments than previous work [36, 37, 38], and constitute a solid basis for future work on the

puzzle.

117



Appendix

118



Appendix A

Perturbative QCD photons at low pT

Pertubative QCD is based on the idea that a large momentum exchange occurs in a hadronic

collisions, allowing for a part of the cross-section to be computed perturbatively. Photons

produced at large transverse momentum can be described by perturbative QCD because the

magnitude of their transverse momentum guarantees a large momentum exchange.

It is understood that perturbative QCD eventually breaks down at low transverse mo-

mentum, although the exact value of pT at which this happens is not clear. When global fits

of parton distribution functions and fragmentation functions to data are made, this issue has

to be considered: data points with scale Q smaller than a chosen minimum scale Q0 are not

used in the fits. The value of Q0 is typically 1 − 1.5 GeV. This value provides an estimate

for the lowest energy scale at which perturbative QCD should be considered reliable.

For photon production in perturbative QCD, the scales are given by an energy scale of

the order of the photon transverse momentum. It is not compulsory to set the scales equal

to pγT ; there could be a proportionality constant, for example. Even a scale that is related

to pγT would do. Such a scale exists for fragmentation photons, where a large transverse

momentum parton is produced first, and then produces a photon through fragmentation. In

this case, using the energy of the parton as scale would also be justified.

In this thesis, the factorisation, renormalisation and fragmentation scales are all set to

Q = pγT/2. The reason behind this choice can be seen on Figure A.1a, where the perturba-

tive QCD calculation of prompt photons described in Section 5.2.1 is evaluated at different

scales Q = NpγT and compared to direct photon measurements in proton-proton collisions at
√
sNN = 200 GeV from RHIC [20]. Results are plotted for Q = NpγT ; N = 1/2 to N = 8,

with the calculations going down to pγT = 1.5/N GeV due Q0 being approximately equal to

1.5 GeV in the calculation.

It is apparent from Figure A.1a that a small proportionality constant such as Q =

pγT/2 provides a better description of the available measurements. The choice Q = pγT/2 in
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Figure A.1: Direct photon spectrum measured in
√
sNN = 200 GeV proton-proton collisions

at RHIC compared with (a) perturbative QCD calculations made with different scales Q (b)
normalised perturbative QCD calculations (Equation A.1)

Section 5.2.1 was made based on this observation.

The lowest pγT available for Q = pγT/2 is pγT = 3 GeV, assuming Q0 = 1.5 GeV. Computing

photons at a lower pγT would require a smaller Q0, which would imply using the perturbative

scale evolution below Q0. A different approach is used here, based on the scale dependence

of the perturbative QCD calculation.

Figure A.1a hints that the main effect of changing the value of N in Q = NpγT is a change

of normalization of the photon spectrum, although it is difficult to see if the calculations

have a different pγT -dependence. This can be verified by rescaling all the calculations by a

constant, so that they have the same normalisation. The following formula is used for the

normalisation
1

2πpT

dσrenormpp

dpT

∣∣∣∣
Q=NpγT

= 1.25N0.26

[
1

2πpT

dσpp
dpT

]
(A.1)

so that Q = pγT/2 is not rescaled, but perturbative QCD calculations made with higher

values of Q are normalised up. The result is shown on Figure A.1b. All calculations fall on

top of each other, supporting the claim that a change in scale results essentially in a change

of normalisation, and not a change in momentum dependence.

The above observation is not trivial. It could very well have been that normalising all

the calculations to have the same magnitude at high pT would have resulted in a different

120



10-5
10-4
10-3
10-2
10-1
100
101
102
103
104

 1  10

1
/(

2
π

p
T
) 

d
σ
π
0

pp
/d

p
T
 (

m
b

 G
e

V
-2

)

pT (GeV)

ALICE
Q=0.5pT
Q=1.0pT
Q=2.0pT
Q=4.0pT
Q=8.0pT

(a)

10-5
10-4
10-3
10-2
10-1
100
101
102
103
104

 1  10

1
/(

2
π

p
T
) 

d
σ
π
0

pp
/d

p
T
 (

m
b

 G
e

V
-2

)

pT (GeV)

ALICE
Q=0.5pT, norm'ed
Q=1.0pT, norm'ed
Q=2.0pT, norm'ed

Q=4.0pT
Q=8.0pT, norm'ed

(b)

Figure A.2: Same as Figure A.1 for pions measured in
√
sNN = 2.76 TeV proton-proton

collisions at the LHC

low pT -dependence. Instead, all calculations lined up. This finding can be used to compute

prompt photons to low pT by simply using a large proportionality constant between Q and

pγT and modifying the overall normalisation so that high pT data are fitted, which in this

case corresponds to the normalisation of Q ≈ pγT/2.

Figure A.1b indicates that the perturbative QCD calculation of prompt photons is in good

agreement with direct photon measurements at low pγT , although it overestimates slightly the

very lowest point around 1 GeV. This good agreement with measurements at low pγT supports

the idea that perturbative QCD calculations can be relied on even at fairly low transverse

momentum. To provide further support for this idea, a similar test is made at the LHC.

While there are no low pT direct photon measurements in proton-proton collisions at the

LHC, there are measurements for e.g. neutral pions. It can thus be verified if the same

scaling behaviour is observed for pions at the LHC. The perturbative QCD calculation of

π0 for different scales is shown on Figure A.2a, while the normalised results are shown on

Figure A.2b. This time, all results were normalised so as to have the same high pT magnitude

as Q = 4pπ
0

T . Note that both axis are logarithmic, unlike the previous figures.

Once again, the normalised calculations line up well, although arguably not as well as

for photons. Nevertheless, the normalised perturbative calculations are in good agreement

with π0 measurements down to pπ
0

T ∼ 1− 2 GeV.

Two conclusions can be drawn from the above. The first one is that any limitation
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imposed by the presence of an effective lower scale Q0 in parton distribution functions and

fragmentation functions can be sidestepped by using larger proportionality constant between

the factorisation/fragmentation scales and the transverse momentum.

The second conclusion is that perturbative QCD appears to provide a good description

of the momentum dependence of hard photons and pions down to pT ∼ 1− 1.5 GeV. On the

other hand, the present results suggest that below this momentum, the perturbative QCD

calculation overestimates the production of particles. With this warning in mind, it can be

said that perturbative QCD can provide an appropriate estimate of prompt photons at low

pT .

It is important to note that the value of for Q should not, in theory, be considered a

parameter of the model to be adjusted to provide a better description of measurements.

Calculations in perturbative QCD are actual predictions, and their scale dependence are

uncertainties of the calculations. The higher the order of the calculation in αs, the smaller

the scale uncertainty.

The pragmatic point of view adopted in this thesis is that prompt photons are needed

at low pT to understand the direct photon excess observed in heavy ion collisions, and

the best estimate of prompt photons should be used. If a given choice of scale provides a

better description of the available direct photon data in proton-proton collisions, than it is

reasonable to assume that using this scale will also provide the best description of low pT

prompt photons in heavy ion collisions.
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Appendix B

Effect of shear viscosity on QGP 2→ 2

photon emission processes: the

“hard” part

In this Appendix, Y 00 and k̃ik̃jY
ij as defined at the end of Section 6.2.1.1 are evaluated.

B.1 Evaluating Y 00

The expression for Y 00 is straightforward to evaluate using what is already known for the

ideal part [31].

Y 00(k/T )[M ] =

∫
d3p̃1d

3p̃2d
3p̃3

P̃ 0
1 P̃

0
2 P̃

0
3

δ4(P̃1 + P̃2 − P̃3 − K̃)Mn1n2
(
1 + σ3n

3
)

[
(1 + σ1n

1)(P̃ 0
1 )2 + (1 + σ2n

2)(P̃ 0
2 )2 + σ3n

3(P̃ 0
3 )2
]

(B.1)

where the following short notations is used:

nj ≡ f
(0)
F/B(Pj)

σj ≡ σB/F (Pj)

Moreover, the notation

f j ≡ f
(0)
F (Pj)

bj ≡ f
(0)
B (Pj)
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is used in everything that follows.

For M = −t/s,

Y 00

[
−t
s

]
=

f(k̃)(2π)2

2

∫ ∞
k̃

dω

∫ ω

|2k̃−ω|

dq

q2

∫ (ω+q)/2

(ω−q)/2
dp̃1

f(p̃1)b(ω − p̃1)
[
1− f(ω − k̃)

]
k̃f(k̃)[

q2 − (2p̃1 − ω)(2k̃ − ω)
]

[
(1− f(p̃1))p̃2

1 + (1 + b(ω − p̃1))(ω − p̃1)2 − f(ω − k̃)(ω − k̃)2
]

(B.2)

For M = −s/t and M = u/t,

Y 00
q>q∗

[
−s
t
,
u

t

]
=

f(k̃)(2π)2

2

∫ ∞
q∗

dq

q2

∫ min(q,2k̃−q)

−q
dω

∫ ∞
(ω+q)/2

dp̃2[
f(k̃ − ω)b(p̃2) [1− f(p̃2 − ω)]

k̃f(k̃)

[
(2p̃2 − ω)(2k̃ − ω) + q2

]
[
(1− f(k̃ − ω))(k̃ − ω)2 + (1 + b(p̃2))(p̃2)2 − f(p̃2 − ω)(p̃2 − ω)2

]
+
f(k̃ − ω)f(p̃2) [1 + b(p̃2 − ω)]

k̃f(k̃)

[
(2p̃2 − ω)(2k̃ − ω)− q2

]
[
(1− f(k̃ − ω))(k̃ − ω)2 + (1− f(p̃2))(p̃2)2 + b(p̃2 − ω)(p̃2 − ω)2

]]
(B.3)

B.2 Evaluating k̃ik̃jY
ij

The second term to evaluate is:

k̃ik̃jY
ij[M ] =

∫
d3p̃1d

3p̃2d
3p̃3

P̃ 0
1 P̃

0
2 P̃

0
3

δ4(P̃1 + P̃2 − P̃3 − K̃)Mn1n2
(
1 + σ3n

3
)

[
(1 + σ1n

1)(k̃ · p̃1)2 + (1 + σ2n
2)(k̃ · p̃2)2 + σ3n

3(k̃ · p̃3)2
]

(B.4)

Remember that M can be equal to −t/s, −s/t and u/t.

B.2.1 First Compton term (−t/s)

The starting point is

k̃ik̃jY
ij

[
−t
s

]
=

∫
d3p̃1d

3p̃2d
3p̃3

P̃ 0
1 P̃

0
2 P̃

0
3

δ4(P̃1 + P̃2 − P̃3 − K̃)

(
−t
s

)
f 1b2

(
1− f 3

)
[
(1− f 1)(k̃ · p̃1)2 + (1 + b2)(k̃ · p̃2)2 − f 3(k̃ · p̃3)2

]
(B.5)
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Introducing the change of variable q ≡ p̃1 + p̃2 and ω ≡ P̃ 0
1 + P̃ 0

2 :

k̃ik̃jY
ij

[
−t
s

]
=

∫
d4Q

∫
d3p̃1d

3p̃2d
3p̃3

P̃ 0
1 P̃

0
2 P̃

0
3

δ4(Q− P̃3 − K̃)

(
−t
s

)
f 1b2

(
1− f 3

)
(B.6)[

(1− f 1)(k̃ · p̃1)2 + (1 + b2)(k̃ · p̃2)2 − f 3(k̃ · p̃3)2
]
δ4(P̃1 + P̃2 −Q)

In terms of Q, P̃1 and K̃,
−t
s

=
2P̃1 · K̃
Q2

(B.7)

Without integrating, the delta functions can be used to transform the integral. First,

expanding the delta functions

δ4(P̃ 0
1 + P̃ 0

2 −Q) = δ(p̃1 + p̃2 − ω)δ3(p̃1 + p̃2 − q)

= δ(p̃1 + |q− p̃1| − ω)δ3(p̃1 + p̃2 − q) (B.8)

δ4(Q− P̃ 0
3 − K̃) = δ(ω − p̃3 − k̃)δ3(q− p̃3 − k̃)

= δ(ω − |q− k̃| − k̃)δ3(q− p̃3 − k̃) (B.9)

Using these Dirac deltas, b2 and f 3 can be written

b2 = b(ω − p̃1) (B.10)

f 3 = f(ω − k̃) (B.11)

These expressions hold for this entire subsection (and only this subsection; not the next).

Using the p̃2 → q− p̃1 and p̃3 → q− k̃ replacements permitted by the delta functions,

the square bracket becomes:[
(1− f 1)(k̃ · p̃1)2 + (1 + b2)(k̃ · (q− p̃1))2 − f 3(k̃ · (q− k̃))2

]
=
[
(1− f 1)(k̃ · p̃1)2 + (1 + b2)(k̃ · q− k̃ · p̃1)2 − f 3(k̃ · q− k̃2)2

]
(B.12)

Using the above, the integral can be rewritten, after integration over p̃2 and p̃3:

k̃ik̃jY
ij

[
−t
s

]
=

∫
d4Q

∫
d3p̃1

Θ(ω − p̃1 ≥ 0)Θ(ω − k̃ ≥ 0)

p̃1(ω − p̃1)(ω − k̃)

(
2P̃1 · K̃
Q2

)
f 1b2

(
1− f 3

)
[
(1− f 1)(k̃ · p̃1)2 + (1 + b2)(k̃ · q− k̃ · p̃1)2 − f 3(k̃ · q− k̃2)2

]
δ(ω − |q− k̃| − k̃)δ(p̃1 + |q− p̃1| − ω) (B.13)

The last integrals that can be solved analytically are the angular integrals. To do so, the
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z-axis of p̃1 is aligned along q, and the z-axis of q along k̃:

k̃ik̃jY
ij

[
−t
s

]
=

∫
dωdqq2

∫
dp̃1p̃

2
1

Θ(ω − p̃1 ≥ 0)Θ(ω − k̃ ≥ 0)

p̃1(ω − p̃1)(ω − k̃)

f 1b2
(
1− f 3

) ∫ 2π

0

dφqk

∫ π

0

dθqk sin(θqk)

∫ 2π

0

dφqp

∫ π

0

dθqp sin(θqp)(
2P̃1 · K̃
Q2

)
δ(ω − |q− k̃| − k̃)δ(p̃1 + |q− p̃1| − ω)[

(1− f 1)(k̃ · p̃1)2 + (1 + b2)(k̃ · q− k̃ · p̃1)2 − f 3(k̃ · q− k̃2)2
]
(B.14)

Expanding the remaining delta functions:

δ
(
ω − |q− k̃| − k̃

)
= δ

(
ω −

√
q2 − 2qk̃ cos(θqk) + k̃2 − k̃

)
=

∣∣∣∣ d

d cos(θqk)

(
ω −

√
q2 − 2qk̃ cos(θqk) + k̃2 − k̃

)∣∣∣∣−1

cos(θqk)=λ1

×δ (cos(θqk)− λ1)

=
|k̃ − ω|
qk̃

δ (cos(θqk)− λ1) ; λ1 =
q2 + k̃2 − (ω − k̃)2

2qk̃
(B.15)

Similarly,

δ(ω − |q− p̃1| − p̃1) =
|p̃1 − ω|
qp̃1

δ(cos(θqp)− λ2); λ2 =
q2 + p̃2

1 − (ω − p̃1)2

2qp̃1

(B.16)

Using this, every occurrence of k̃ · q is replaced by k̃qλ1. Doing this and simplifying

further:

k̃ik̃jY
ij

[
−t
s

]
= 2

∫
dωdq

∫
dp̃1

Θ(ω − p̃1 ≥ 0)Θ(ω − k̃ ≥ 0)

k̃

f 1b2
(
1− f 3

) ∫ 2π

0

dφqk

∫ π

0

dθqk sin(θqk)

∫ 2π

0

dφqp

∫ π

0

dθqp sin(θqp)(
p̃1k̃ − p̃1 · k̃

Q2

)
δ(cos(θqk)− λ1)δ(cos(θqp)− λ2)[

(1− f 1)(k̃ · p̃1)2 + (1 + b2)(k̃qλ1 − k̃ · p̃1)2 − f 3(k̃qλ1 − k̃2)2
]
(B.17)
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Defining k̃ · p̃1 = k̃p̃1 cos(θkp), the square bracket is written in an expansion in cos(θkp):

(1− f 1)(k̃p̃1 cos(θkp))
2 + (1 + b2)(k̃qλ1 − k̃p̃1 cos(θkp))

2 − f 3(k̃qλ1 − k̃2)2

= (1− f 1)k̃2p̃2
1 cos(θkp)

2 + (1 + b2)(k̃qλ1)2 − 2(1 + b2)(k̃2qp̃1λ1 cos(θkp))

+ (1 + b2)k̃2p̃2
1 cos(θkp)

2 − f 3(k̃qλ1 − k̃2)2 =
2∑

n=0

αn cos(θkp)
n

where

α0 = (1 + b2)k̃2q2λ2
1 − f 3(k̃qλ1 − k̃2)2 (B.18)

α1 = −2(1 + b2)(k̃2qp̃1λ1) (B.19)

α2 = (1− f 1)k̃2p̃2
1 + (1 + b2)k̃2p̃2

1 (B.20)

The term cos(θkp) can be written

cos(θkp) = sin(θqp) sin(θqk) cos(φqp − φqk) + cos(θqp) cos(θqk)

= ε1

√
1− λ2

1ε2

√
1− λ2

2 cos(φqp − φqk) + λ1λ2 (B.21)

where εi = ±1 depending on the argument of the corresponding cos(θ).

Replacing the square bracket by
∑2

n=0 αn cos(θkp)
n and replacing the integral over the

delta functions by their values (which is Θ(λ2
i ≤ 1)):

k̃ik̃jY
ij

[
−t
s

]
= 2

∫
dωdq

∫
dp̃1

Θ(ω − p̃1 ≥ 0)Θ(ω − k̃ ≥ 0)

k̃
f 1b2

(
1− f 3

) p̃1k̃

Q2

Θ(λ2
1 ≤ 1)Θ(λ2

2 ≤ 1)∫ 2π

0

dφqk

∫ 2π

0

dφqp

(
2∑

n=0

αn cos(θkp)
n −

2∑
n=0

αn cos(θkp)
n+1

)
(B.22)

The integrals over cos(θkp)
n can be done analytically. Defining In as

In(λ1, λ2) =

∫ 2π

0

dφqk

∫ 2π

0

dφqp cos(θkp)
n (B.23)

k̃ik̃jY
ij
[−t
s

]
can finally be written

k̃ik̃jY
ij

[
−t
s

]
= 2

∫
dωdq

∫
dp̃1

Θ(ω − p̃1 ≥ 0)Θ(ω − k̃ ≥ 0)

k̃
f 1b2

(
1− f 3

) p̃1k̃

Q2

Θ(λ2
1 ≤ 1)Θ(λ2

2 ≤ 1)
2∑

n=0

αn(In − In+1) (B.24)
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The Θ functions are the same as in the ideal case, and thus yield the same limits on the

integrals:

k̃ik̃jY
ij

[
−t
s

]
= 2

∫ ∞
k̃

dω

∫ ω

|2k̃−ω|
dq

∫ ω+q
2

ω−q
2

dp̃1
f 1b2 (1− f 3) p̃1

(ω2 − q2)

2∑
n=0

αn(In − In+1)

(B.25)

For n = 0 to 3, In is

I0 = (2π)2 (B.26)

I1 = (2π)2λ1λ2 (B.27)

I2 =
(2π)2

2

(
2λ2

1λ
2
2 + (λ2

1 − 1)(λ2
2 − 1)

)
(B.28)

I3 =
(2π)2

2
λ1λ2

(
2λ2

1λ
2
2 + 3(λ2

1 − 1)(λ2
2 − 1)

)
(B.29)

B.2.2 Second Compton term and annihilation

The two remaining terms (−s/t and u/t) share part of the derivation. Consequently as much

as possible of the derivation is made before replacing the value of the squared matrix element

M . This time the change of variable used is q ≡ k̃ − p̃1 and ω ≡ K̃0 − P̃ 0
1 . The cut-off

q > q∗ is imposed on the Q integral.

k̃ik̃jY
ij[M ] =

∫
d4Q

d3p̃1d
3p̃2d

3p̃3

P̃ 0
1 P̃

0
2 P̃

0
3

δ4(P̃2 − P̃3 −Q)Mn1n2
(
1 + σ3n

3
)

(B.30)[
(1 + σ1n

1)(k̃ · p̃1)2 + (1 + σ2n
2)(k̃ · p̃2)2 + σ3n

3(k̃ · p̃3)2
]
δ4(K̃ − P̃1 −Q)

Note that the values of the σi’s are different for Compton scattering (−s/t) and quark-

antiquark annihilation (u/t).

The momentum that are integrated over are p̃1 and p̃3. Without integrating, these

variables are replaced in the integrand using the delta functions:

k̃ik̃jY
ij[M ] =

∫
d4Q

d3p̃1d
3p̃2d

3p̃3

P̃ 0
1 P̃

0
2 P̃

0
3

δ4(P̃2 − P̃3 −Q)Mn1n2
(
1 + σ3n

3
)

(B.31)[
(1 + σ1n

1)(k̃ · (k̃− q))2 + (1 + σ2n
2)(k̃ · p̃2)2 + σ3n

3(k̃ · (p̃2 − q))2
]

δ4(K̃ − P̃1 −Q)
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with

n1 = n(k̃ − ω) (B.32)

n2 = n(p̃2) (B.33)

n3 = n(p̃2 − ω) (B.34)

In terms of Q and P̃2, M is either

−s
t

=
−(P̃1 + P̃2)2

(P̃1 − K̃)2
=
−2P̃1 · P̃2

Q2
=
−2(P̃2 · K̃ − P̃2 ·Q)

Q2
(B.35)

or
u

t
=

(P̃2 − K̃)2

(P̃1 − K̃)2
=
−2P̃2 · K̃

Q2
(B.36)

Expanding the Dirac deltas:

δ4(P̃2 − P̃3 −Q) = δ(p̃2 − p̃3 − ω)δ3(p̃2 − p̃3 − q)

= δ(p̃2 − |p̃2 − q| − ω)δ3(p̃2 − p̃3 − q) (B.37)

and

δ4(K̃ − P̃1 −Q) = δ(k̃ − p̃1 − ω)δ3(k̃− p̃1 − q)

= δ(k̃ − |k̃− q| − ω)δ3(k̃− p̃1 − q) (B.38)

Remembering that

δ(a± |b− c|) =
|a|
bc
δ(cos(θbc)− λ); λ =

b2 + c2 − a2

2bc
(B.39)

for an arbitrary non-zero scalar a and vectors b and c, θbc being the angle between those

two vectors, the delta functions can be expanded:

δ(p̃2 − |p̃2 − q| − ω) =
|p̃2 − ω|
p̃2q

δ(cos(θqp)− λ1); λ1 =
p̃2

2 + q2 − (p̃2 − ω)2

2p̃2q
(B.40)

and

δ(k̃ − |k̃− q| − ω) =
|k̃ − ω|
k̃q

δ(cos(θqk)− λ2); λ2 =
k̃2 + q2 − (k̃ − ω)2

2k̃q
(B.41)
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The above expressions can be used to write:

Q · P̃2 = ωp̃0
2 − qp̃2 cos(θqp) = ωp̃2 − qp̃2λ1 (B.42)

k̃ · q = k̃q cos(θqk) = k̃qλ2 (B.43)

At this point, nothing depends on p̃1 and p̃3 anymore, so the integration over these

variables is trivial, and yields only two theta functions: Θ(k̃ − ω ≥ 0) and Θ(p̃2 − ω ≥ 0):

k̃ik̃jY
ij[M ] =

∫
d4Q

d3p̃2

(k̃ − ω)p̃2(p̃2 − ω)
Mn1n2

(
1 + σ3n

3
)

Θ(k̃ − ω ≥ 0)Θ(p̃2 − ω ≥ 0)[
(1 + σ1n

1)(k̃2 − k̃qλ2)2 + (1 + σ2n
2)(k̃ · p̃2)2 + σ3n

3(k̃ · p̃2 − k̃qλ2)2
]

|p̃2 − ω|
p̃2q

δ(cos(θqp)− λ1)
|k̃ − ω|
k̃q

δ(cos(θqk)− λ2) (B.44)

Writing k̃ · p̃2 = k̃p̃2 cos(θkp),

k̃ · p̃2 = k̃p̃2(1− cos(θkp)) (B.45)

In terms of cos(θqp) and cos(θqk), cos(θkp) is

cos(θkp) = sin(θqp) sin(θqk) [sin(φqp) sin(φqk) + cos(φqp) cos(φqk)] + cos(θqp) cos(θqk)

= ε1

√
1− λ2

1ε2

√
1− λ2

2 [sin(φqp) sin(φqk) + cos(φqp) cos(φqk)] + λ1λ2 (B.46)

where εi = ±1 depending on value of θ when the relation sin(θ) = ±
√

1− cos(θ)2 is used.

Rewriting M according to the above transformations:

−s
t

=
2(ωp̃2 − qp̃2λ1)

Q2
+
u

t
(B.47)

and
u

t
=
−2k̃p̃2(1− cos(θkp))

Q2
(B.48)

Every θqk and θqp dependence have been removed, besides the delta functions. It is thus

possible to integrate over these two variables to get rid of the two last delta functions. After

these integrations and further simplifications:

k̃ik̃jY
ij[M ] =

∫
dωdq

dp̃2

k̃
n1n2

(
1 + σ3n

3
)

Θ(k̃ − ω ≥ 0)Θ(p̃2 − ω ≥ 0) (B.49)

Θ(λ2
1 ≤ 1)Θ(λ2

2 ≤ 1)

∫ 2π

0

dφqp

∫ 2π

0

dφqkM[
(1 + σ1n

1)(k̃2 − k̃qλ2)2 + (1 + σ2n
2)(k̃ · p̃2)2 + σ3n

3(k̃ · p̃2 − k̃qλ2)2
]
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The theta functions are the same as in the ideal case and impose the following limits on

the integrals: −q < ω < min(q, 2k − q) and (q + ω)/2 < p̃2 <∞, meaning that

k̃ik̃jY
ij[M ] =

∫ ∞
q∗

dq

∫ min(q,2k−q)

q

dω

∫ ∞
(q+ω)/2

dp̃2

k̃
n1n2

(
1 + σ3n

3
)

∫ 2π

0

dφqp

∫ 2π

0

dφqkM
[
(1 + σ1n

1)(k̃2 − k̃qλ2)2

+(1 + σ2n
2)(k̃ · p̃2)2 + σ3n

3(k̃ · p̃2 − k̃qλ2)2
]

(B.50)

The integrand of the φ integrals is written as
∑2

n=0 βn cos(θkp). Expanding the integrand:

(1 + σ1n
1)(k̃2 − k̃qλ2)2 + (1 + σ2n

2)(k̃p̃2 cos(θkp))
2 + σ3n

3(k̃p̃2)2 cos(θkp)
2

− 2σ3n
3(k̃2p̃2qλ2) cos(θkp) + σ3n

3(k̃qλ2)2 (B.51)

implies that

β0 = (1 + σ1n
1)(k̃2 − k̃qλ2)2 + σ3n

3(k̃qλ2)2

β1 = −2σ3n
3(k̃2p̃2qλ2)

β2 = (1 + σ2n
2)(k̃p̃2)2 + σ3n

3(k̃p̃2)2

Using again the definition

In =

∫ 2π

0

dφqp

∫ 2π

0

dφqk cos(θkp)
n (B.52)

k̃ik̃jY
ij
[−s
t

]
can be written

k̃ik̃jY
ij

[
−s
t

]
=

∫ ∞
q∗

dq

∫ min(q,2k−q)

q

dω

∫ ∞
(q+ω)/2

dp̃2

k̃
n1n2

(
1 + σ3n

3
)

1

Q2

[
2(ωp̃2 − qp̃2λ1)

2∑
n=0

βCn In − 2k̃p̃2

2∑
n=0

βCn (In − In+1)

]
(B.53)

with

βC0 = (1− f 1)(k̃2 − k̃qλ2)2 − f 3(k̃qλ2)2 (B.54)

βC1 = 2f 3(k̃2p̃2qλ2) (B.55)

βC2 = (1 + b2)(k̃p̃2)2 − f 3(k̃p̃2)2 (B.56)
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and

k̃ik̃jY
ij
[u
t

]
=

∫ ∞
q∗

dq

∫ min(q,2k−q)

q

dω

∫ ∞
(q+ω)/2

dp̃2

k̃
n1n2

(
1 + σ3n

3
)

(
−2k̃p̃2

Q2

2∑
n=0

βAn (In − In+1)

)
(B.57)

with

βA0 = (1− f 1)(k̃2 − k̃qλ2)2 + b3(k̃qλ2)2 (B.58)

βA1 = −2b3(k̃2p̃2qλ2) (B.59)

βA2 = (1− f 2)(k̃p̃2)2 + b3(k̃p̃2)2 (B.60)
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Appendix C

Effect of shear viscosity on QGP 2→ 2

photon emission processes: the “soft”

part

C.1 Simplifying iΠµ
12µ(K)

The assumption is made that fF/B(−K) = fF/B(K). The first step in simplifying iΠµ
12µ(K)

is to make explicit how the various propagators and self-energies entering the calculations

tranform under K → −K.

C.1.1 Useful symmetry properties

First note that

S12/21(−K) = −S21/12(K) (C.1)

∆12/21(−K) = ∆21/12(K) (C.2)

Then see that

Σ12/21(−P ) = −Σ21/12(P ) (C.3)

Consequently the self-energy transforms as

Σµ
R(−P ) = −Σµ

A(P ) (C.4)

which implies that

SDR (−P ) = −SDA (P ) (C.5)
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Then

SD12/21(−P ) = SDR (−P )Σ12/21(−P )SDA (−P ) = −SDA (P )Σ21/12(P )SDR (P )

= (SDR (P )Σ21/12(P )SDA (P ))∗ = (SD21/12(P ))∗ (C.6)

where the relation (Σ21/12(P ))∗ = −Σ21/12(P ) and (SDR (P ))∗ = SDA (P ) where used.

Since S12/21(K) is proportional to a single gamma matrix,

γµS12/21(K)γµ = −2S12/21(K) (C.7)

C.1.2 KMS-like relations in the hard thermal loop limit

In the following, the KMS-like relation Σ12 = −Σ21 = −iIm[ΣR] is derived for a general

ansatz of momentum anisotropy that respects fF/B(−K) = fF/B(K).

The starting point is

Σ12(P ) = 2ig2
sCF

∫
d4W

(2π)4
S12(W )∆12(P −W ) (C.8)

with the assumption that P is soft (∼ gsT ) and W is hard (∼ T ), the so-called hard-loop

limit.

Σµ
12(P ) = 2ig2

sCF

∫
d4W

(2π)4
W µ2πiδ(W 2)[−θ(−W 0) + fF (W )]

(−2π)iδ((P −W )2)[θ(−(P 0 −W 0)) + fB(P −W )]

≈ 2ig2
sCF

∫
d4W

(2π)2
W µδ((W 0)2 − w2)[−θ(−W 0) + fF (W )]

δ(2P ·W )[θ(−(P 0 −W 0)) + fB(P −W )]

≈ ig2
sCF

[∫
d4W

(2π)2
W µδ(W 0 − w)fF (W )δ(P 0W 0 − p ·w)[1 + fB(W )]

+

∫
d4W

(2π)2
W µδ(W 0 + w)[−1 + fF (W )]δ(P 0W 0 − p ·w)fB(W )

]
(C.9)

The following relation was used:

δ((W 0)2 − w2) =
δ(W 0 − w) + δ(W 0 + w)

2w
(C.10)

The last lines of the above equation do not change under the transformation P → −P .

Thus, in the hard loop limit, Σ12/21(P ) = Σ12/21(−P ).

It is already known that Σ12/21(−P ) = −Σ21/12(P ). Thus, in the hard loop limit
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Σ12/21(P ) = −Σ21/12(P ) hold for any distribution fF/B(W ) that has the property fF/B(W ) =

fF/B(−W ).

The next step is to show that Σ12 = −iIm[ΣR]. By changing W → −W in the last term,

it can be combined with the first.

Σµ
12(P ) =

ig2
sCF
2

∫
d4W

(2π)2

W µ

w
δ(W 0 − w)δ(P 0W 0 − p ·w)

[fF (W )[1 + fB(W )]− [−1 + fF (W )]fB(W )]

=
ig2
sCF
2

∫
d4W

(2π)2

W µ

w
δ(W 0 − w)δ(P 0W 0 − p ·w) [fF (W ) + fB(W )]

Delta function δ(W 0 − w) simply means that w is on-shell:

Σµ
12(P ) = iπg2

sCF

∫
d3w

(2π)3

W µ

w2
δ(P 0 − p · ŵ) [fF (W ) + fB(W )]

Extracting a factor of T from W (W ≡ V T ), Σµ
12(P ) becomes

Σµ
12(P ) = iπg2

sCFT
2

∫
d3v

(2π)3

V µ

v2
δ(P 0 − p · v̂) [fF (V ) + fB(V )]

On the other hand, −iIm[ΣR] is given by

−iIm[ΣR](P ) =
−iCFg2

sT
2

4

∫
d3v

(2π)3

4(fF (V ) + fB(V ))

v
V µIm

[
1

V · P + iε

]
(C.11)

Writing V · P + iε = v(V̂ · P + iε′), the imaginary part is then

Im

[
1

V̂ · P + iε′

]
=

−ε′

(V̂ · P )2 + ε′2
(C.12)

In the limit ε′ → 0,

lim
ε′→0

−ε′

(V̂ · P )2 + ε′2
= −πδ(V̂ · P ) (C.13)

Then

−iIm[ΣR(P )] = iπCFg
2
sT

2

∫
d3v

(2π)3

(fF (V ) + fB(V ))

v
V µδ(V̂ · P ) (C.14)

Consequently Σµ
12(P ) = −iIm[ΣR(P )].
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C.1.3 Final simplifications

Using the properties of the previous section, iΠ µ
12 µ(K) can be rewritten as

−iΠ µ
12 µ(K) = −2e2

∑
q

q2
sNc

∫
d4Q

(2π)4
Tr[SD12(Q)S21(Q−K) + SD21(Q)S12(Q+K)]

For convenience, the following definition is made

−iΠ µ
12 µ(K) ≡

−2e2
∑

q q
2
sNc

(2π)4
I(K) (C.15)

with

I(K) =

∫
d4QTr[SD12(Q)S21(Q−K) + SD21(Q)S12(Q+K)]

Inverting Q in the last term of the integrand of I(K), we get

I =

∫
d4QTr[SD12(Q)S21(Q−K) + SD21(−Q)S12(−Q+K)]

=

∫
d4QTr[SD12(Q)S21(Q−K)− (SD12(Q))∗S21(Q−K)]

=

∫
d4QTr[2iIm[SD12(Q)]S21(Q−K)]

= −4π

∫
d4Qδ((Q−K)2)[−θ((Q0 −K0)) + fF (Q−K)]Tr[Im[SD12(Q)](/Q− /K)]

The argument that K ∼ T � Q ∼ gT was used to get rid of the theta functions and to

replace Q−K by −K where possible.

I = 2fF (K)π

∫
d4Qδ(K ·Q)Tr[ /KIm[SD12(Q)]] (C.16)

Using Σ12(Q) = −iIm[ΣR(Q)], then

SD12/21(Q) = −iSDR (Q)Im[ΣR(Q)]SDA (Q) (C.17)

Then I(K) is

I(K) = 2πfF (K)

∫
d4Qδ(K ·Q)Tr[ /KIm[−iSDR (P )Im[ΣR(Q)]SDA (P )]]

A gamma matrix can be extracted from both SDR (P ) and Σ12(P ):

Tr[γµγνγσγλ] = 4(gµνgσλ − gµσgνλ + gµλgνσ) (C.18)
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Then I(K) is

I(K) = 8πfF (K)

∫
d4Qδ(K ·Q)[Im[−iK · SDR (Q)Im[ΣR(Q)] · SDA (Q)]

+K · Im[ΣR(Q)]SDR (Q) · SDA (Q) + Im[−iK · SDA (Q)SDR (Q) · Im[ΣR(Q)]]]

Combining the first and last terms:

I(K) = 8πfF (K)

∫
d4Qδ(K ·Q)[−2Re[K · SDR (Q)Im[ΣR(Q)] · SDA (Q)]

+K · Im[ΣR(Q)]SDR (Q) · SDA (Q)]

By expanding SDR/A(Q) and using the property that QµΣDµ
R (Q) is real, the proof can be

completed:

I(K) = 8πfF (K)

∫
d4Qδ(K ·Q)

[
−2Re

[
K · (Q− ΣR(Q))

(Q− ΣR(Q))2
Im [ΣR(Q)] · (Q− Σ∗R(Q))

(Q− Σ∗R(Q))2

]
+K · Im

[
ΣR(Q)

(Q− ΣR(Q))

(Q− ΣR(Q))2
· (Q− Σ∗R(Q))

(Q− Σ∗R(Q))2

]]
= 8πfF (K)

∫
d4Qδ(K ·Q)

[
−2Re

[
K · ΣR(Q)

(Q− ΣR(Q))2

[ΣR(Q)− Σ∗R(Q)]

2i
· (Σ∗R(Q))

(Q− Σ∗R(Q))2

]
+Im

[
K · ΣR(Q)

(Q− ΣR(Q))2

(Q− ΣR(Q)) · (Q− Σ∗R(Q))

(Q− Σ∗R(Q))2

]]
= 8πfF (K)

∫
d4Qδ(K ·Q)

[
−Im

[
−K · SDR (Q)

ΣR(Q) · Σ∗R(Q)− Σ∗R(Q)2

(Q− Σ∗R(Q))2

]
+Im

[
−K · SDR (Q)

(Q− ΣR(Q)) · (Q− Σ∗R(Q))

(Q− Σ∗R(Q))2

]]
Noting that

− ΣR(Q) · Σ∗R(Q) + Σ∗R(Q)2 + (Q− ΣR(Q)) · (Q− Σ∗R(Q))

= −ΣR(Q) · Σ∗R(Q) + Σ∗R(Q)2 +Q2 − 2Q · Σ∗R(Q) + ΣR(Q) · Σ∗R(Q)

= Q2 − 2Q · Σ∗R(Q) + Σ∗R(Q)2

= (Q− Σ∗R(Q))2 (C.19)

it is finally possible to write

I(K) = −8πfF (K)

∫
d4Qδ(K ·Q)Im

[
K · SDR (Q)

]

137



C.2 Evaluating J0(K) J ′1(K)

With the ansatz f shearF/B (V ) used for shear viscosity in this thesis, f(V ) is given by

4(fF (V ) + fB(V )) =
4

sinh(V )
+

4 cosh(V )

sinh(V )2
AµνV

µV ν (C.20)

where

Aµν ≡
πµν

2(ε+ P)
(C.21)

The first term of Equation C.20 is denoted f(0)(V ) and the second f(1)(V ).

It is clear that Σ̃µ
R(X) can thus be split in two terms:

Σ̃µ
R(X) = Σ̃µ

R(0)(X) + Σ̃µ
R(1)(X) (C.22)

where Σ̃µ
R(0)(X) is the equilibrium retarded self-energy and Σ̃µ

R(1)(X) contains one power of

Aµν .

Linearising in Aµν , J(K) can be written

J(K) = −
∫
d4Xδ(K ·X)KµIm

[
Σ̃µ
R(0)(X) + Σ̃µ

R(1)(X)

(X − Σ̃R(0)(X)− Σ̃R(1)(X))2

]

≈ −
∫
d4Xδ(K ·X)KµIm

[
Σ̃µ
R(0)(X) + Σ̃µ

R(1)(X)

[(X − Σ̃R(0)(X))2 − 2(X − Σ̃R(0)(X)) · Σ̃R(1)(X)]

]
≈ −

∫
d4Xδ(K ·X)Kµ

Im

[Σ̃µ
R(0)(X) + Σ̃µ

R(1)(X)

(X − Σ̃R(0)(X))2

][
1−

2(X − Σ̃R(0)(X)) · Σ̃R(1)(X)

(X − Σ̃R(0)(X))2

]−1


≈ −
∫
d4Xδ(K ·X)Kµ

Im

[[
Σ̃µ
R(0)(X) + Σ̃µ

R(1)(X)

(X − Σ̃R(0)(X))2

][
1 +

2(X − Σ̃R(0)(X)) · Σ̃R(1)(X)

(X − Σ̃R(0)(X))2

]]

≈ −
∫
d4Xδ(K ·X)Kµ

[
Im

[
Σ̃µ
R(0)(X)

(X − Σ̃R(0)(X))2

]

+ Im

[
Σ̃µ
R(1)(X)

(X − Σ̃R(0)(X))2
+

2Σ̃µ
R(0)(X)(X − Σ̃R(0)(X)) · Σ̃R(1)(X)

(X − Σ̃R(0)(X))4

]]

The second to last line can be identified the equilibrium result J0(K), and the last line

as the viscous correction J1(K).
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In the equilibrium case, Σ̃R(0) admits simple tensor decomposition:

Σ̃R(0)(X) = ÃXµ + B̃uµ (C.23)

which can be used to write out the expression for J0(K) as:

J0(K) = −k
∫
d4Xδ(K ·X)Im

[
B̃

((1− Ã)2X2 − 2(1− Ã)B̃X0 + B̃2)

]

Similarly,

J1(K) = −
∫
d4Xδ(K ·X)

Im

[
KµΣ̃µ

R(1)(X)

(X − Σ̃R(0)(X))2
−

2B̃K · uB̃uµΣ̃µ
R(1)(X)

(X − Σ̃R(0)(X))4

]
(C.24)

Writing Σ̃µ
R(1)(X) as Σ̃µ

R(1)(X) = AαβY
αβµ where

Y αβµ(X) =

∫
d3v

(2π)3

4 cosh(V )

sinh(V )2

1

v

V αV βV µ

V ·X + iε
(C.25)

then

J1(K) = −Aαβ
∫
d4Xδ(K ·X)

Im

[
KµY

αβµ

(X − Σ̃R(0)(X))2
− 2B̃K · uB̃uµY αβµ

(X − Σ̃R(0)(X))4

]
(C.26)

The remaining integral is defined as Zαβ. By tensor decomposition, it is given by

Zαβ = agαβ + buαuβ + cKαKβ + d(Kαuβ +Kβuα) (C.27)

After contraction with Aαβ, the only term that survives is cKαKβ:

J1(K) = −AαβcKαKβ (C.28)

The coefficient c is given by the projector P(c)αβ:

P(c)αβ =

[
[(u ·K)2 −K2]gαβ + [2(u ·K)2 +K2]uαuβ + 3KαKβ − 6K · uuαKβ

]
2[(u ·K)2 −K2]2

(C.29)
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which can be simplified to

P(c)αβ =

[
k2gαβ + 2k2uαuβ + 3KαKβ − 6kuαKβ

]
2k4

(C.30)

since K is on-shell and massless.

The coefficient c is then given by

c =

∫
d4Xδ(K ·X)

Im

[
P(c)αβKµY

αβµ

(X − Σ̃R(0)(X))2
−

2B̃K · uB̃P(c)αβuµY
αβµ

(X − Σ̃R(0)(X))4

]
(C.31)

The contractions uαuβKµY
αβµ, KαKβKµY

αβµ, uαKβKµY
αβµ, uαuβuµY

αβµ must be eval-

uated. To do so, the tensor decomposition of Y αβµ is used:

Y αβµ = a(Xµgαβ +Xαgβµ +Xβgµα) + b(uµgαβ + uαgβµ + uβgµα)

+c(Xµuαuβ +Xαuβuµ +Xβuµuα)

+d(XµXαuβ +XαXβuµ +XβXµuα)

+f(uµuαuβ) + g(XµXαXβ) (C.32)

Using the property K ·X = 0, P(c)αβKµY
αβµ is found to be

P(c)αβKµY
αβµ = P(c)αβKµ

[
a(Xαgβµ +Xβgµα) + b(uαgβµ + uβgµα)

+c(Xαuβuµ +Xβuµuα) + d(XαXβuµ)
]

= P(c)αβ

[
a(XαKβ +XβKα) + b(uαKβ + uβKα)

+ck(Xαuβ +Xβuα) + dkXαXβ
]

(C.33)

P(c)αβuµY
αβµ = P(c)αβuµ

[
a(Xαgβµ +Xβgµα) + b(uαgβµ + uβgµα) + c(Xαuβuµ +Xβuµuα) + . . .

= P(c)αβ

[
(a+ c+ dX0)(Xαuβ +Xβuα) + (d+ gX0)XαXβ

]
(C.34)
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P(c)αβ(XαKβ +XβKα) =
2X0

k
P(c)αβ(uαKβ + uβKα) = 0

P(c)αβ(Xαuβ +Xβuα) = 0

P(c)αβX
αXβ =

X2 + 2(X0)2

2k2

(C.35)

Thus

P(c)αβKµY
αβµ =

[
2X0

k
a+

X2 + 2(X0)2

2k
d

]
P(c)αβuµY

αβµ =
X2 + 2(X0)2

2k2
(d+ gX0) (C.36)

Coefficient a, d and g can be evaluated as

a =
21ζ(3)

π2

(
−

(X0)2 + ((X0)2 − x2) (2− 6X0Σ0
(0)(X))

6x4

)

d =
21ζ(3)

π2

(
15(X0)3 − 13X0x2 − 30(X0)4Σ0

(0)(X) + 36(X0)2x2Σ0
(0)(X)− 6x4Σ0

(0)(X)

6x6

)

g =
21ζ(3)

π2

(
−15(X0)2 + 4x2 + 30(X0)3Σ0

(0)(X)− 18X0x2Σ0
(0)(X)

6x6

)
(C.37)

Finally, J1(K) is given by

J1(K) = AαβK
αKβ 1

k2
J ′1(K) (C.38)

where J ′1 is given by

J ′1 = −k2

∫
d4Xδ(K ·X)

Im

[[
2X0

k
a+

X2 + 2(X0)2

2k
d

]
1

((1− Ã)2X2 − 2(1− Ã)B̃X0 + B̃2)

−X
2 + 2(X0)2

2k
(d+ gX0)

2B̃2

[((1− Ã)2X2 − 2(1− Ã)B̃X0 + B̃2)]2

]
(C.39)
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C.2.1 Evaluating Ã and B̃

In this section, Ã and B̃ as defined in

Σ̃R(0)(X) = ÃXµ + B̃uµ (C.40)

are evaluated in terms of Σ̃0
R(X) and XµΣ̃µ

R(X).

First

Σ̃0
R(X) = ÃX0 + B̃

XµΣ̃µ
R(X) = ÃX2 + B̃X0 (C.41)

so that

Ã =
X0Σ̃0

R(X)−XµΣ̃µ
R(X)

(X0)2 −X2

B̃ = −X
2Σ̃0

R(X)−X0XµΣ̃µ
R(X)

(X0)2 −X2
(C.42)

Evaluating Σ̃0
R(X) yields

Σ̃0
R(X) =

∫
d3v

(2π)3

f(V )

v

V 0

V ·X + iε

=

∫
dvv

(2π)2
f(v)

1

x

∫ π

0

dθ sin(θ)
1

X0/x− cos(θ) + iε′

=
1

4x

[
ln

(
1 +X0/x

1−X0/x

)
− iπ

]
if |X0/x| < 1 (the imaginary part drops if |X0/x| > 1).

The second term is simpler:

XµΣ̃µ
R(X) =

∫
d3v

(2π)3

f(V )

v
=

1

2
(C.43)
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