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Résumé

La section efficace des photons et des pions neutres ayant de grandes quan-

tités de mouvement tranversales produits dans des collisions proton-proton

est calculée en utilisant la formule standard basée sur la chromodynamique

quantique (QCD) perturbative. Les calculs sont faits au premier “twist” et

au second ordre, et sont comparés à des mesures provenant du Relativistic

Heavy Ion Collider (RHIC). La section efficace est aussi calculée pour des col-

lisions deutéron-or à l’aide d’un modèle basé sur des distributions de partons

nucléaires et sur un prolongement de la formule des collisions proton-proton

aux collisions noyau-noyau. Les calculs basés sur ce modèle sont comparés à

des mesures provenant du même accélérateur. L’effet des pertes d’énergie des

partons sur les calculs de sections efficaces dans les collisions deutéron-or est

aussi étudié.
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Abstract

The cross-section of large transverse momentum photons and neutral pions

in proton-proton collisions is calculated using the standard perturbative QCD

formula at leading twist, next-to-leading order, and is compared to data from

the Relativistic Heavy Ion Collider (RHIC). The cross-section of hard photons

and neutral pions is also calculated for deuteron-gold collisions using a model

based on an extension of the proton-proton calculation to nucleus-nucleus col-

lisions and on phenomenological nuclear parton distribution functions. The

deuteron-gold calculations are compared to data measured at the same col-

lider. The effect of parton energy loss on the deuteron-gold calculations is also

investigated.
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Chapter 1

Introduction

The contribution of particle accelerators to high-energy physics is enormous.

They provided the first insights of new physics, and plenty of data against

which the new theories could be tested. In a way, their contribution can be

likened to that of spectroscopy, a century ago, to the nascent field of quantum

mechanics.

Data collected with increasingly sophisticated particle accelerators and de-

tectors have helped establish the current theory of strong, weak and electro-

magnetic interactions, known as the Standard Model of particle physics. The

latest accelerators are also expected to help developing the next generation of

theories that will describe even better the interactions of elementary particles.

Beside looking for a replacement to the Standard Model, particle accelera-

tors are also unique tools to study the Standard Model, which does not reveal

its secrets easily. Particle accelerators are helping understanding the Standard

Model just as much as they helped establishing it.

Colliding different kinds of particles together provides different kinds of

information about elementary particles and their interactions. For example, in

the past, highly inelastic collisions of high-energy electrons with protons (deep

inelastic scattering — DIS) gave the first direct evidence of the existence of

quarks and of their basic properties, while electron-positron (e−e+) collisions

helped to firmly establish the existence of gluons and their role as carrier of

the strong force [1, Section VI-A].

The type and amount of information that can be extracted from collisions

also depend heavily on the capacities of the detectors that surround the region

of the collisions. While the first experiments with high-energy electron-proton

collisions could detect only the energy lost and the change of momentum of
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the electron [2, Section III], modern detectors can also measure the energy

and momentum of a large number of others particles — photons, hadrons,

muons, . . . — and also have a much better accuracy and an increased angle

coverage1, allowing more complex observables to be studied.

Hadronic collisions are fundamentally different from those involving lep-

tons: in the first case, it is through the strong interaction that the colliding

particles interact, while in the second case it is either through the electromag-

netic or weak interaction. Relativistic nuclear collisions — collisions of nuclei

at very high energies — have proved to be a very rich field of research and

an excellent way of studying strong interactions. Such collisions are, however,

much more complicated than e.g. electron-proton or e−e+ collisions.

1.1 Relativistic nuclear collisions

What makes relativistic nucleus-nucleus collisions, even proton-proton ones,

so complicated is that while electrons are elementary particles, protons are

not: they are composite objects of a very large number of quarks, antiquarks

and gluons. A simple way of picturing an electron-proton collision is an elec-

tron that interacts electromagnetically with a single quark, antiquark or gluon

(collectively known as partons). In the same picture, a simple proton-proton

collision is actually a collision of two clouds of hundreds of partons. The

partons may interact many times before they are bound together again into

hadrons.

In collisions of larger nuclei — relativistic heavy ion collisions — even more

partons interact. When the energy and the density of partons are high enough,

the behaviour of the partons changes drastically: they start behaving like a

plasma of almost free quarks and gluons — a quark-gluon plasma (QGP) [4].

For now, only in collisions of fairly large nuclei are the density and energy

high enough for a QGP to be created, and only for a very short time. This

is, however, a major discovery as the QGP is thought to be a new phase of

matter that may have been the state of the Universe very shortly after the Big

Bang.

The QGP is one of many discoveries made by particle accelerators recently.

Interest in it has been especially high lately due to new results made available

1See for example [3, Section 2] for a short description of the H1 and ZEUS detectors of
the HERA accelerator.
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thanks to the Relativistic Heavy Ion Collider (RHIC), a particle accelerator

located at the Brookhaven National Laboratory built specifically to study col-

lisions of heavy nuclei and to learn more about the QGP.

Even in collisions of very heavy nuclei at very high energies, a QGP is

formed only in a tiny region of space for a very short period of time.2 It

is thus very challenging to learn about its properties. Most of the current

techniques to do so are indirect and mostly based on the good understanding

of relativistic nuclear collisions in which no QGP is expected to be formed,

like proton-proton, proton-nucleus or light nuclei collisions, or even collisions of

large nuclei at low energies. The core idea behind these indirect techniques is to

use observables that are already well-understood in QGP-less nucleus-nucleus

collisions as probes of the QGP: if a model that can describe a given observable

in a QGP-less nucleus-nucleus collision has to be modified to describe the

same observable in a collision where a QGP is created, then the required

modifications to the model can be related to properties of the QGP. Of course,

these indirect techniques require that QGP-less nucleus-nucleus collisions be

very well understood, or at least that the observables used to study the QGP

be well understood in such collisions.

In this thesis, a single observable is studied for two different collisions: hard

particle production in relativistic proton-proton and deuteron-gold collisions.

As hard particle production is one of the probes used to learn about the QGP

in heavy ion collisions, it is possible to justify this whole thesis by the need to

improve, or verify, our understanding of that observable in QGP-less nucleus-

nucleus collisions. This is definitively one of the rationales of this thesis —

an important one — but it would be unfair to say that it is the only one.

Relativistic nuclear collisions, even simple proton-proton ones, offer countless

opportunities to study strongly interacting particles and their interactions,

and collisions like deuteron-gold ones add to these possibilities a window into

the gold nucleus, without the complications of heavy ion collisions, that opens

doors to many other applications.

2The dimensions and the lifetime of the QGP at RHIC are estimated to be of the order
of fm (10−15 m) in size and fm/c (≈ 3× 10−24 s) in time.
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(b)

Figure 1.1: a) Definition of the transverse plane (identified by the letter Π)
with respect to the collision axis and b) a sketch of a proton-proton collision.
Figure 1.1a modified from [5, Figure 53]

1.2 Hard particle production

From an experimental point of view, a hard particle is a particle that has a

large momentum and that is produced at a large angle with respect to the

collision axis. This is usually summarised as “large transverse momentum”,

where “transverse” refers to the transverse plane, shown in figure 1.1a: it is

the plane perpendicular to the collision axis. The meaning of “large” in “large

momentum” is not always well-defined, but it usually means a momentum

larger than a few (1–5) GeV/c.

Hard hadrons produced in relativistic nuclear collisions are produced along

with a group of hadrons moving roughly in the same direction but with a range

of different momenta. This group of hadrons is called a jet. Figure 1.1b is a

sketch of a nuclear collision with jets, depicted as cones, emerging from it.

The reason that makes hard hadrons, or hard particles in general, espe-

cially interesting is a theoretical one. To understand it, it is useful to describe

the production of hard particles in a collision, a proton-proton collision for

example, using what is called the parton model. In this model, hadrons are

described as clouds of partons and collisions of hadrons are related to much

simpler collisions of partons. Figure 1.2 shows a proton-proton collision ac-

cording to this model.

Figure 1.2a shows the protons as clouds of partons. Figure 1.2b just shows

that the collision is thus reduced to parton-parton interactions. Figure 1.2c

illustrates a more interesting process, fragmentation. Fragmentation reflects

the fact that partons are never detected alone, they are always bound into

hadrons. Thus the partons exiting from the parton-parton interaction of fig-

ure 1.2b must somehow transform into hadrons; fragmentation represents this

4



g

g

g

g

g

g

u

u
d

u

ud d

s

s

d

d

u

u

proton proton

g
g

g

g

g

g

g

u

u
d

u

ud d

s

s

d

d

u

u

g

(a) Before the collision

g

g

g

g

g

g

u

u
d

u

ud d

s

s

d

d

u

u

g
g

g

g

g

g

g

u

u
d

u

ud d

s

s

d

d

u

u

g

u

u

d

d

(b) Collision

d

hadrons

(c) After the collision

Figure 1.2: A proton-proton collision according to the parton model

process.

The parton model preceded the development of quantum chromodynamics

(QCD), the current theory of strong interactions. It was developed using

general physical arguments that were expected to hold when the momentum

exchange of the parton-parton interaction (figure 1.2b) is large3, as in hard

particle production. The parton model’s ability to describe data was often

unsatisfactory, but it did allow to make a number of impressive predictions

and it provided a very useful “intuitive” description of particle collisions that

is still commonly used.

Attempts to formalise the parton model using quantum chromodynamics

3Although “large momentum exchange” and “large transverse momentum” are often used
as synonyms, there is a nuance between the two that should be understood. The problem is
that on the experimental side, it is difficult to know if a large momentum was exchanged in a
parton-parton interaction. However, under the approximate assumption that the partons of
a proton have no initial transverse momentum, if the transverse momentum of a produced
particle is large, it had to emerge from a parton-parton collision that exchanged a large
momentum (it is assumed that there is no other way for the particle to acquire a large
transverse momentum).
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yielded a framework called “perturbative QCD”. This new approach, widely

used today, is able to describe data to an impressive precision. Yet perturbative

QCD still has the same limitation as the parton model: it works only for

large transverse momentum particles. The origin of this limitation is now well

understood, it has to do with something called the running of the effective

coupling, an intrinsic property of QCD. It is this property that makes possible

the calculation of the cross-section of hard particles, but also that renders

extremely challenging the same task for non-hard — that is, soft — particles.

What sets hard particles apart from others is merely this ability to calculate

their cross-section with perturbative QCD.

1.3 Deuteron-gold collisions

The framework of perturbative QCD that works so well for hard particle

production in proton-proton collisions cannot be easily extended to nucleus-

nucleus collisions like deuteron-gold ones.4 Actually, it is not yet known how to

calculate hard particle production in nucleus-nucleus collisions directly from

quantum chromodynamics. On the other hand, there are models, based to

various extent on QCD, that can reproduce the data well. A model that can

be used to calculate hard particle production in nucleus-nucleus collisions in

which no QGP is created is described in chapter 4. The presence of a QGP

renders the collisions much more complex and a significant amount of addi-

tional modeling is required; studying such collisions is a whole other story, not

covered in this thesis.

As the QGP is studied at RHIC using relativistic gold-gold collisions,

deuteron-gold collisions are a very important intermediate step in the quest

to learn about the properties of the QGP. The theoretical understanding of

deuteron-gold collisions is already much poorer than it is for proton-proton

collisions, but deuteron-gold collisions are still significantly simpler than gold-

gold collisions. They are thus very important to verify our understanding of

e.g. hard particle production in such QGP-less collisions. They can also be

4Relativistic nuclear collisions are often classified as hadron-hadron, hadron-nucleus or
nucleus-nucleus collisions. However, for hard particle production, the difference between
hadron-nucleus collisions and nucleus-nucleus ones is less relevant than the formation or not
of a QGP in those collisions. Thus, deuteron-gold collisions are treated here as nucleus-
nucleus collisions, though in the classification scheme mentioned above they are closer to
the hadron-nucleus category than the nucleus-nucleus one.
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used as a simpler framework to test models necessary to understand heavy ion

collisions, like parton energy loss models.

This thesis focuses on understanding well hard particle production in rela-

tivistic deuteron-gold collisions, not on the applications of this understanding.

Only two types of particles are investigated: photons and neutral pions (π0).

The choice of π0 among all the possible mesons is largely due to experimental

factors: π0 data are in general more widely available and more precise. For

photons, the reasons are rather different: they are chosen because they provide

channels of informations that are, if not complementary, at least different than

those of mesons (and hadrons in general), as photons are elementary particles

and are not affected by the strong force.

The structure of the thesis is as follow. The second chapter is devoted to ex-

plaining how hard particle cross-sections can be calculated from the Standard

Model. Hard photon and π0 production is explained in the third chapter for

proton-proton collisions, and in the fourth chapter for deuteron-gold collisions.

In both cases, the calculations are compared to data from RHIC.

The conclusions of the third chapter are fairly rigorous, based directly on

quantum chromodynamics, but what is described in chapter 4 is really a model,

one that was chosen among many other competing models. The possibility of

adding parton energy loss to the model described in the fourth chapter is

explored briefly in the fifth and final chapter of this thesis.
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Chapter 2

Theory

A complex machinery is required to relate the current theory of weak, elec-

tromagnetic and strong interactions, the Standard Model, to quantities mea-

surable in experiments. In this thesis, the only experimental results used are

cross-sections measured by particle detectors in particle accelerators. This

chapter is devoted to explaining how certain cross-sections can be calculated

from the Standard Model. To do so, it is necessary to begin with a description

of the latter.

2.1 Theories of fundamental interactions

The Standard Model is a theory that describes in a unified way the strong,

weak and electromagnetic forces. The first step in this unification was the de-

velopment of quantum electrodynamics (QED), a theory of electromagnetism

compatible with quantum mechanics. A new theory that could describe both

QED and the weak interaction was developed later, the electroweak theory.

When a theory of strong interactions, quantum chromodynamics (QCD), was

found some years later, it was combined with the electroweak theory to give

what is now known as the Standard Model.

All these theories are variations of a larger group called quantum field

theories. Quantum field theories describe the behaviour of “fields” in a way

consistent with special relativity and quantum mechanics. A field is associated

with every type of elementary particles, and an arbitrary number of elementary

particles of a given type can be described with a single field. For example, the

most basic form of QED consists of an electron field and a photon field, and it

8



can describe any low-energy system composed only of electrons and photons.1

Quantum field theories differ by their field content — the number and type

of fields that are included in each theory — and by how the fields are allowed

to interact with each other. In a subset of quantum field theories called gauge

theories, the ways fields are allowed to interact are restricted by requiring

them to respect a certain symmetry, called the gauge symmetry. Quantum

electrodynamics, quantum chromodynamics and the electroweak model are all

gauge theories, with different field content and gauge symmetries.

Physical quantities can be calculated from the Lagrangian density of a

quantum field theory. This Lagrangian density is defined by all possible com-

binations of fields that are consistent with Lorentz invariance (special relativ-

ity), the assumed gauge symmetry (for gauge theories) and a further restric-

tion, renormalisability. For the present discussion, it is enough to say that

renormalisability puts constraints on the dimension of the terms that can ap-

pear in the Lagrangian density. Although renormalisability is taken here as

an assumption, it is really more a consequence of trying to describe with a

quantum field theory a high-energy theory at low energies [7, Section 4.1].

Using the above three conditions, it is possible to write down the La-

grangian density of a gauge theory. Quantum chromodynamics, described in

the next section, gives a good example of how it is done.

2.1.1 QCD2

Quantum chromodynamics is the theory of strong interactions. It describes

the interactions of quarks and gluons. There are six “flavours” of quarks:

up, down, strange, charm, top and bottom. There are also three “colours” of

quarks, which can be labelled red, green and blue. There are thus 18 different

types of quarks: red up quarks, red down quarks, green up quarks, . . . This

means 18 fields. Quarks are spin-one-half fermions and as such are represented

by Dirac fields, noted ψρ. All the quark fields can be noted as one field using

a tensor notation: ψρaf where “a” is a colour index and “f” a flavour one.

There are also 8 types of gluons, which are spin-one bosons each represented

by a vector field, noted Aµ. All gluon fields can be noted as Aαµ where the α

1The low-energy constraint comes from the fact that at high enough energy, new types of
particles can be created in the system. See [6, Section 1.2.2]. Also, there are actually three
other fields, one for each neutrino, but they do not interact with electrons and photons. See
[6, Section 1.6.1].

2This section is in large part based on [8, Section 2.1] and [6, Section 1.6.3].
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index can take 8 values. The field content of QCD is thus 18 quark fields, ψρaf ,

and 8 gluon fields, Aαµ.

Quantum chromodynamics is a gauge theory, so the physics it describes is

assumed to be invariant under a gauge symmetry. For QCD, this symmetry is

assumed to be a symmetry under a mixing among its colours of each flavour

of quarks. The mixing is assumed to be of the form q′r

q′g

q′b

 = M

 qr

qg

qb


with M † = M−1, for all six flavours of quarks. The transformation is assumed

to be the same for every flavour.

A 3× 3 matrix M that respects M † = M−1 is an unitary matrix that can

be written as M = eiθN . N can be further decomposed as the exponential of

a weighted sum of eight matrices Λα: N = eiωαΛα . The Λα matrices obey the

relation [Λα,Λβ] = ifαβγΛγ. The decomposition of N in Λα and the relation

obeyed by the Λα matrices can be better understood in the context of group

theory, not used here. It comes from the fact that the Λα matrices form a

representation of the SU(3) group.

A term of the form ψ̄ρaf
(
/D +m

)
ψρaf , with Dµ = ∂µ−igsAαµΛα, is assumed

to appear in the Lagrangian density. This imposes that if the quark fields

rotate in the colour space, the gluon fields also change in a well-defined way so

that the term is left unchanged. This defines how the gluon fields transform

because of the gauge symmetry, and it in turn imposes restrictions on the kind

of terms involving those fields that can appear in the Lagrangian density.

The only other renormalisable, Lorentz invariant term compatible with the

gauge symmetry is Gα
µνG

αµν with Gα
µν ≡ ∂µA

α
ν − ∂νAαµ + gsfαβγA

β
µA

γ
ν .

The Lagrangian density of QCD is thus

LQCD = −ψ̄ρaf
(
/D +m

)
ψρaf −

1

4
Gα

µνG
αµν (2.1)

Effective coupling and asymptotic freedom

Attempts to extract experimentally measurable quantities from QCD often

result in calculations that seem to diverge. Some of those divergences are the

result of inappropriate approximations made in the calculations, but one type

of divergences, ultra-violet ones, is actually intrinsic to QCD [8, Section 3.2].

10



Figure 2.1: Running of αs(Q) compared with experimental measurements.
Figure from [9, Figure 5]

Two procedures must be applied to eliminate those divergences, regularisation

and renormalisation. One of the results of renormalisation is the definition of

an effective coupling constant3, gs(Q), that depends on an arbitrary energy

scale, Q, the renormalisation scale. The Q evolution of gs(Q) is given by

Q
dgs(Q)

dQ
= β(gs(Q)) (2.2)

where β(gs(Q)) is called the beta function. What is very interesting is that

β(gs(Q)) can be calculated perturbatively and such calculations show that

it is negative at large Q. This means that gs(Q) goes to zero as Q goes to

infinity. This is called asymptotic freedom. It is a key in understanding why

QCD interactions are very strong at low energies but seem to be weak at high

energies. The evolution of αs(Q), usually referred to as “the running of the

coupling”, is illustrated in figure 2.1.4

Since equation 2.2 is a differential equation, it needs an initial condi-

tion to be solved. A common initial condition is αs(MZ), where MZ ≈
3αs(Q) = g2s(Q)/4π is often used instead of gs(Q) as effective strong coupling constant.
4The procedure of renormalisation is not unique and it is possible to define αs(Q) in

many different ways. Figure 2.1 corresponds to a very specific definition of αs(Q), and it is
important to understand that the plot would be different for other definitions of αs(Q). See
the legend of [9, Figure 5] and the paper in general for the details on the definition used for
figure 2.1.
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91.19 GeV/c2 [10, Section 1] is the mass of the Z boson. Another possible

way of specifying the initial condition is ΛQCD, which is the energy scale Q at

which αs(Q) diverges if the beta function is computed only at the first order.5

2.1.2 Standard Model

Quantum chromodynamics is one part of the Standard Model, the other being

the electroweak theory. The particle content of the Standard Model is the

quarks and gluons of QCD plus six spin-one-half fermions (electron, muon,

tau, electron neutrino, mu neutrino and tau neutrino), four spin-one bosons

(W 1
µ , W 2

µ , W 3
µ and Bµ) and the famous spin-zero Higgs boson [6, Chapter 2].

The observed bosons (W±
µ , Zµ) and the photon (Aµ) are not directly associated

with the Wα
µ and Bµ fields, but are rather combinations of those fields.

The gauge symmetry is SUC(3)×SUL(2)×UY(1). The first part, SUC(3), is

the invariance under colour mixing of QCD described in the previous section.

The SUL(2)×UY(1) part is the gauge symmetry of the fields of the electroweak

part of the Standard Model, which is not as easy to explain as QCD and is

not described here in more detail.

The Lagrangian density of the Standard Model is defined by using the

same assumptions that were described previously: Lorentz invariance, gauge

symmetry and renormalisability. Predictions made with it have been shown

to agree extremely well with data [12]. Interestingly, it is widely accepted that

the Standard Model is only a very good approximation of a more fundamental

but still unknown theory. To date, only one prediction of the Standard Model,

the masslessness of the neutrinos, seems to be wrong, if not counting the Higgs

boson that has still not been observed6, but these are not the only, often not

even the primary, reasons that push people to look for a more fundamental

theory. Deeper reasons include finding a theory with less free parameters than

the Standard Model, trying to bridge the gap between gravity and the three

other fundamental interactions and providing answers to some mysteries of

cosmology.

That being said, whatever is the more fundamental theory, the Standard

model remains a very, very good approximation of it at the energies currently

involved in nuclear collisions in particle accelerators. The fact that there is

physics beyond the Standard Model is, or at least is assumed to be, of no

5ΛQCD is defined differently at higher order. See [11, Section II-D-2].
6The search for the Higgs boson is underway at CERN’s Large Hadron Collider (LHC).
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importance for the present work.

2.2 From theory to experiments

It is in general non-trivial to extract experimentally measurable quantities

from the Standard Model, and this is especially true if the strong interaction

is involved. Two methods for calculating cross-sections are described in this

section. The first is the S-matrix formalism, which allows to calculate cross-

sections of elementary particles of the Standard Model. It is especially well

suited for perturbative techniques and it works very well for the electroweak

part of the model.

The second method is perturbative QCD (pQCD) and it used, as its name

suggests, to calculate cross-sections for processes involving the strong interac-

tion. Such calculations cannot be made with the S-matrix formalism because

it is not cross-sections of quarks and gluons that are measured in particle ac-

celerators, it is cross-sections of hadrons and nuclei, which are bound states of

quarks and gluons (free quarks and gluons have never been encountered alone).

Perturbative QCD addresses this problem with the idea of factorisation, which

states that although some cross-sections cannot be completely calculated using

perturbative techniques, the non-perturbative parts can be isolated and can

be shown to be the same for different processes. This means that although

pQCD cannot generally make predictions, it can give relations between the

cross-sections of various processes. Another way of seeing this is that once the

non-perturbative parts are fixed in experiments, they can be used to calculate

other cross-sections.

Perturbative QCD is only useful if at least a part of the cross-section of

a process is indeed perturbatively calculable. Asymptotic freedom suggests

that the coupling constant of QCD is small only at high enough energies;

the applicability of pQCD is limited to those high-energy processes. Other

techniques have been developed to extract information, often observables other

than cross-sections, from QCD when perturbative techniques cannot be used.

The main ones are lattice QCD, effective Lagrangians and AdS/CFT. They

are not described here as only cross-sections calculable with pQCD are studied

in this thesis.
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2.2.1 S-matrix formalism

The S-matrix formalism is a way to calculate, among other things, cross-

sections and decay rates of elementary particles described by a quantum field

theory, given the Lagrangian density of that theory. The argumentation that

leads from the Lagrangian density to the final formulae involves some sub-

tleties and is not explained here. The final formulae are rather simple, though.

The formula for the cross-section, the only one needed here, is [6, Chapter 3]

dσ(α→ β) =
|Mβα|2 (2π)4

4
√

(p1 · p2)2 −m2
1m

2
2

δ4

(
(p1 + p2)−

(
n∑
j=1

kj

))∏
f∈β

d3kf
2Ef (2π)3

(2.3)

where

Mβα = 〈β|HI(x = 0)|α〉+ (−i)2

2!

∫
dx4〈β|T [HI(x)HI(x = 0)] |α〉+ . . . (2.4)

The variables m1 and m2 are the masses of the two initial particles, rep-

resented by initial state |α〉, and p1 and p2 are their four-momenta. The final

state |β〉 consists of n particles of four-momenta k1, . . . , kn.

The operator HI(x) is the interacting Hamiltonian density, the part of the

Hamiltonian density that is responsible for the interaction. It is usually related

to the interacting Lagrangian density byHI(x) = −LI(x) or by a slightly more

complicated expression if HI(x) contains derivatives.

Equation 2.4 is especially suited for perturbative calculations. The Hamil-

tonian density HI(x) contains a coupling constant, and if this coupling con-

stant is small enough, calculating only the first few terms of equation 2.4

can be expected to give a reasonably accurate approximation ofMβα and thus

of dσ(α→ β).

2.2.2 Perturbative QCD

The precursor of perturbative QCD was the parton model, which was briefly

presented in the introduction. The parton model was based on general physics

principles and on experimental observations, but not on QCD itself. The

development of QCD allowed to better understand why some of the ideas

introduced by the parton model seemed to work very well, and why other did

not.

The basis of pQCD is the factorisation theorems [11, Section IV]. Those are

14



proofs, derived from QCD, that various cross-sections can indeed be separated

in perturbative and calculable parts, and non-perturbative but universal parts.

What is often called the factorisation theorem is the idea that perturbative and

non-perturbative parts are separable, but there are actually many theorems

because the proofs are not the same for every process.

The starting point of the factorisation theorems is that most cross-sections

can be expressed as

dσ = dσ[0] +

(
Q0

Q

)
dσ[1] +

(
Q0

Q

)2

dσ[2] + . . . (2.5)

where Q is the energy “scale” of the process, which is related to the part of the

calculation that is expected to be perturbatively calculable. The variable Q0 is

another energy scale in the process, which should be much smaller than Q by

assumption. It can be ΛQCD, for example, or the mass of a particle involved

in the process, depending on the process under consideration. Most of the

factorisation theorems are proved for dσ[0] only. The first term, dσ[0], is called

the leading twist contribution and the higher terms suppressed by powers of

Q0/Q are called higher twist contributions.

Saying that dσ[0] is factorisable means that it can be separated in pertur-

bative and non-perturbative parts. For example,

dσ[0] = F1 ⊗ F2 ⊗ dσ̂ (2.6)

where F1 and F2 are unknown functions and dσ̂ is a perturbatively calculable

expression. The Fi and dσ̂ usually depend on some common variables and ⊗
denotes possible integration over those variables.

By assumption, dσ̂ is perturbatively calculable and as such can be expressed

as an expansion in the effective coupling αs(Q),

dσ̂ = dσ̂(0) + αs(Q)dσ̂(1) + α2
s(Q)dσ̂(2) + . . . (2.7)

where Q again appears as the energy scale of the process.

If only dσ̂(0) is calculated, the cross-section is said to be calculated at leading

order (LO). If the dσ̂(1) term is also included, it is said to be a next-to-leading

order (NLO) calculation, and so on. It is also possible in some cases to sum

a part of every dσ̂(n) instead of calculating dσ̂ one order at the time. This

is called resummation and it is meant to include in the calculation of equa-

tion 2.7 terms that are large even if they are suppressed by large powers of
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αs(Q) [13]. The terms summed at all order are usually logarithms that become

large in certain kinematic limits. Resummation of the largest logarithm is

called leading log resummation, the second largest logarithm a next-to-leading

log resummation and so on. Since resummation includes terms at all order, it

includes some but not all the terms of the fixed-order calculations. To make

an improvement over the fixed-order calculations, it is necessary to combine

fixed-order and resummed calculations. Joining together resummed and fixed-

order expansions requires at least to identify and remove the terms that were

included in both expansions [14].

It is clear that for dσ (equation 2.5) to be approximated well by dσ[0] and

for the dσ̂ perturbative expansion (equation 2.7) to be reliable, the scale Q

must be large. It is also clear that as long as the non-perturbative parts Fi are

unknown, no prediction can be made. There are thus important restriction on

the type of processes for which predictions can be made. In the next section,

a complete example of how those restrictions can be dealt with is presented

for the case of single-particle inclusive production in hadron-hadron collisions.

Single-particle inclusive production in hadron-hadron collisions

Single-particle inclusive production in hadron-hadron collisions is the cross-

section for producing a given particle, a π0 meson or a photon for example,

in a hadron-hadron collision. It is a cross-section that can be proved to be

factorisable into perturbative and non-perturbative parts [11, Section IV–C–

2]. At leading twist, the formula is

Eh
d3σ

dp3
h

=
∑
a,b,c

∫
dxadxb

dzc
zc
fa/A(xa, Qfac)fb/B(xb, Qfac)

[
Ec
d3σ̂

dk3
c

(Qren)

]
Dh/c(zc, Qfrag)

(2.8)

where fa/A(x,Q) andDh/c(z,Q) are the non-perturbative functions and d3σ̂(Q)

is a perturbatively calculable parton-parton cross-section. The non-perturbative

functions fa/A(x,Q) and Dh/c(z,Q) are unknown, but they also appear in the

leading twist formula of many other cross-sections for which factorisation is

proved, for example electron-hadron collisions (DIS), e−e+ annihilation and

dilepton production in hadron-hadron collisions (Drell-Yan) [15, Section 7&8].

Only fa/A(x,Q) appears in the formulae for DIS and Drell-Yan, and only

Dh/c(z,Q) in the formula for e−e+ annihilation. This means that if DIS and

Drell-Yan are used to fix fa/A(x,Q) and e−e+ annihilation for Dh/c(z,Q), pre-
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dictions can be made for single-particle inclusive cross-sections.

The functions fa/A(x,Q) and Dh/c(z,Q) are called respectively the parton

distribution function (p.d.f.) of hadron “A” and the fragmentation function

(f.f.) for particle “h”. In the parton model, the p.d.f. is interpreted as the

probability that a parton of type “a” has a momentum fraction x of the mo-

mentum of hadron “A”, and the f.f. is interpreted as the probability that a

parton “c” fragments into a particle “h” having a fraction z of the parton’s

momentum.

Parton distribution functions and fragmentation functions depend on two

variables, x/z and Q. The Q dependence is actually computable perturba-

tively for any range of Q where the effective strong coupling constant αs(Q)

is small enough for perturbative calculations to be trustable. In that case, the

Q evolution is governed by the DGLAP equation7, which is similar but not

identical for parton distribution functions and fragmentation functions. For

p.d.f.’s, it takes the form [16, Section 3]

µ
dfa/A(x, µ)

dµ
=
∑
b

∫ 1

x

dξ

ξ
Pa/b(ξ, αs(µ))fb/A(x/ξ, µ) (2.9)

where the kernel Pa/b is computable perturbatively. The Q dependence is thus

known and p.d.f.’s and f.f.’s only need to be fitted for the variable x/z.

The perturbative part of equation 2.8 is dσ̂(Q). It is a parton-parton

cross-section and can be calculated using the S-matrix formalism described in

the previous section. The result is a power expansion of dσ̂(Q) of the form of

equation 2.7 due to the perturbative expansion of equation 2.4. For single-

particle inclusive cross-sections, dσ̂(Q) is known at leading order and next-

to-leading order. Leading log and next-to-leading log resummations are also

known. For all those approximations of dσ̂(Q) to be reliable, however, Q must

be large. In the present case, Q is of the order of the transverse momentum of

the produced particle, which means that low order approximations of dσ̂(Q)

can only be expected to be reliable for large transverse momentum (hard)

particle production. A large Q is also desirable to make sure that the leading

twist approximation is reliable too.

Assuming that there is enough experimental data to fix both the p.d.f. for

hadrons “A” and “B” and the f.f. for particle “h”, equation 2.8 can thus

be used to predict the inclusive production of hard hadron “h” in collisions

7Also known as Altarelli-Parisi equation in older publications.
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of a hadron “A” with a hadron “B”. In the next chapter, equation 2.8 is

compared to experimental data for both hard π0 and photon production in

proton-proton collisions.
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Chapter 3

Hard π0 and photon production

in proton-proton collisions

The leading twist formula for single-particle inclusive cross-sections in hadron-

hadron collisions is equation 2.8. To make predictions for proton-proton

collisions, a proton parton distribution function (fa/p(x,Q)) is required, as

well as a fragmentation function for π0 (Dπ0/c(z,Q)) or photons (Dγ/c(z,Q)).

An approximation for the perturbative part, Ecd
3σ̂/dk3

c , is also necessary.

Proton parton distribution functions are widely available nowadays. They

are the results of fits to many sets of experimental data. As they are fits, they

differ by the assumed forms of the fits, the number of free parameters used

and the assumptions made to constrain some of these parameters. They also

differ by the data sets used to do the fitting.

Fitting parton distribution functions is a difficult task and without enough

data, the p.d.f.’s can be poorly constrained. Another problem is that some

processes are fairly insensitive to certain p.d.f., a good example being the very

weak dependence of DIS on the gluon distribution. These limitations have

led to the inclusion of an increasingly large number of data sets from many

different processes. Although the reasons to do so are good, it renders difficult

the task of making predictions as envisioned originally, that is measure the

non-perturbative functions (p.d.f.’s and f.f.’s) in a given set of processes and

use them to make predictions about other types of processes. This goal can

actually be quite complicated to achieve as what constitutes “another type
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of process” is not very clearly defined.1 It is thus very important to choose

carefully which p.d.f. to use for a given calculation. The same applies to

fragmentation functions, which are fitted in a similar way.

Another aspect of p.d.f.’s and f.f.’s that must be treated with care is the

renormalisation and factorisation scheme in which they are defined. The pro-

cedures of renormalisation, which aims at eliminating divergences from the

calculations, and factorisation, which allows to separate the perturbative and

non-perturbative parts of a calculation, are not uniquely defined. Until quite

recently, p.d.f.’s and f.f.’s used either the “fixed flavour number” (FFN) or the

“zero mass variable flavour number” (ZM-VFN) factorisation scheme. Both

are good approximations in certain kinematic ranges, but it is often necessary

to make calculations outside those domains of applicability. To remedy to this

problem, a scheme that superseded both, the “general mass variable flavour

number” (GM-VFN) scheme, was developed. The basis of this scheme is an

extended proof [17] of the factorisation theorems of [15, 16] so that they can

be used in cases when Q is not much larger than the mass of all the quarks.2

Despite its much wider applicability, the GM-VFN scheme is much more

difficult to use than the ZM-VFN scheme and the latter is still widely used.

Actually, it is not yet known how to calculate single-particle inclusive cross-

sections with the GM-VFN scheme beyond leading order. The ZM-VFN

scheme thus has to be used, and appropriate p.d.f.’s and f.f.’s must be used

with it. In general, “appropriate” means p.d.f.’s and f.f.’s defined using the

ZM-VFN scheme.3 Care must also be taken about the choice of renormalisa-

tion scheme used with the factorisation scheme. The one generally used with

the ZM-VFN factorisation scheme is the common “modified minimal subtrac-

tion” (MS) renormalisation scheme.

A final word of caution about p.d.f.’s and f.f.’s must be made regarding the

order at which they are known. Because p.d.f.’s and f.f.’s are extracted using

factorised formulae, just like equation 2.8, for which the perturbative part is

known only at a given perturbative order, they are defined only at that same

1For example, most people would agree that DIS, e−e+ annihilation and Drell-Yan are
different processes, but Drell-Yan and photon production, or jet and hadron production, are
similar processes. What constitutes a “real” prediction is debatable.

2It should be noted that there is some freedom in the proof that makes possible the
definition of different but equally valid implementations of the GM-VFN scheme. See [18,
Section 3].

3It is pointed out in [18, Section 4] and in [19] that if the scale Q is much larger than the
mass of the quarks, it is also correct to use p.d.f’s and f.f.’s defined in the GM-VFN scheme.
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perturbative order. The same applies for their scale evolution (equation 2.9

for p.d.f.’s). To calculate equation 2.8 at a given order, it is important to use

p.d.f.’s and f.f.’s defined at the same order, or at a higher order [13, Section 2].

There is no simple expression for the x/z and Q dependence of modern

p.d.f.’s and f.f.’s: the x or z dependence is a fit to data and the known Q

dependence is highly non-trivial. Both p.d.f.’s and f.f.’s are generally avail-

able numerically through programs provided by the authors of the fits. Li-

braries that regroup many p.d.f.’s are also available, the most recent one being

LHAPDF4.

The case being settled for p.d.f.’s and f.f.’s, the final piece needed to cal-

culate hard particle cross-sections is an expression for the perturbative part,

Ecd
3σ̂/dk3

c . As mentioned previously, this part is not known exactly but ap-

proximations at leading order, next-to-leading order, leading log and next-to-

leading log are known. The leading order approximation is fairly simple and

it is possible to write a program to calculate cross-sections at that order in

a reasonable amount of time. A similar undertaking for the next-to-leading

order approximation would require more time than most people are willing

to invest in such a project, but it is possible to use programs made available

online by generous researchers. The next-to-leading order results in this thesis

are calculated with such a program.

Although leading order cross-sections are generally not accurate enough to

reproduce experimental results, they allow to introduce in a simple way many

ideas that remain true at higher orders. The leading order cross-section is

presented in the next section for both π0 meson and photon production. The

next-to-leading order results are presented after.

3.1 Leading order cross-section

According to the S-matrix formalism, the leading order parton-parton cross-

section is

dσ̂LO =

∣∣MLO
∣∣2

4
√

(pa · pb)2 −m2
am

2
b

(2π)4δ4 ((pa + pb)− (pc + pd))
d3pc

2Ec(2π)3

d3pd
2Ed(2π)3

(3.1)

with

MLO = 〈qc(pc), qd(pd)|HI(x = 0)|qa(pa), qb(pb)〉 (3.2)

4http://projects.hepforge.org/lhapdf/
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The qi, i ∈ {a, b, c, d}, represent partons with four-momenta pi.

In the centre-of-mass frame, the coordinate axes can be chosen such that the

four-momenta of the protons are PA = (
√
s/2)(1, 0, 0, 1) and PB = (

√
s/2)(1, 0, 0,−1),

where
√
s is the centre-of-mass energy of the system [20, Appendix]. The mass

of the proton is neglected. The four-momenta of partons a and b are thus

pa = (xa
√
s/2)(1, 0, 0, 1) and pb = (xb

√
s/2)(1, 0, 0,−1) if the masses of the

quarks are also neglected.5

The four-momentum pc is noted pc = (Ec, p
c
T , 0, p

c
l ). Using the rapidity yc =

(1/2) ln ((Ec + pcl )/(Ec − pcl )), pc can be written pc = pcT (cosh yc, 1, 0, sinh yc)

for massless quarks.

Assuming a spin and colour average over the partons qi, the possible val-

ues for the factor 〈
∣∣MLO

∣∣2〉color,spin are listed in [20, Table I], modulo a factor

1/(16πŝ2). The results are expressed in terms of the parton Mandelstam vari-

ables ŝ = (pa + pb)
2, t̂ = (pa − pc)2 and û = (pb − pc)2, which can be rewritten

ŝ = xaxbs, t̂ = −xapcT
√
se−yc and û = −xbpcT

√
seyc using the above definitions

for pa, pb and pc.

The spin and colour average of dσ̂LO is thus

d¯̂σLO ≡
〈
∣∣MLO

∣∣2〉color,spin

16π2xaxbs
δ4 ((pa + pb)− (pc + pd))

d3pc
Ec

d3pd
2Ed

(3.3)

Using the identity d3p/2E = d4pδ(p2), the integral over pd can be done

easily. Also, δ(p2
d) = δ((pa + pb − pc)

2) is equal to δ(ŝ + t̂ + û) for massless

quarks. The differential cross-section can thus be written

Ec
d3 ¯̂σLO

dp3
c

=
〈
∣∣MLO

∣∣2〉color,spin

16π2ŝ
δ(ŝ+ t̂+ û) (3.4)

which is exactly the expression that enters the factorised formula for hard

particle cross-sections (equation 2.8).

If q1 = u, q2 = d, q3 = u and q4 = d, for example,

Ec
d3 ¯̂σLO

dp3
c

=
ŝ

π

[
〈
∣∣MLO

∣∣2〉color,spin

16πŝ2

]
δ(ŝ+t̂+û) =

ŝ

π

[(
πα2

s(Q)

ŝ2

)
4

9

ŝ2 + û2

t̂2

]
δ(ŝ+t̂+û)

If q3 and q4 are exchanged, û and t̂ are exchanged in the bracket. Every

other parton-parton cross-section can be determined by the same technique

using [20, Table I]. Of course, the
∣∣MLO

∣∣2 terms could also be computed.

5The assumption only matters for quarks as gluons are thought to be massless.
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Details on the calculations are available in [21, Appendix] for example.

A wide choice of parton distribution functions is available. A fairly recent

one that uses the ZM-VFN scheme, CTEQ6 [22], is used. As π0 fragmenta-

tion function, KKP [23] is used, for technical reasons, although more recent

f.f.’s ([24, 25]) are available. For photons, BFG [26] is used as fragmentation

function.

Only three parameters remain in equation 2.8, the three scales Qfac, Qren

and Qfrag. The factorisation theorem only says that these scales should be,

in the present case, of the order of the transverse momentum of the produced

particle. If equation 2.8 was known exactly, this freedom in the choice of

scales would not be a problem since equation 2.8 would be totally invariant

under that choice of scales. Unfortunately, equation 2.8 is known only at

finite order, at rather low finite order actually, and it does depend on the

choice of scales. At leading order, that scale dependence can be expected to

be significant.

In the present case, the scales are all taken to be equal to a constant, κ,

times the transverse momentum of the hadron/photon: Qfac = Qren = Qfrag =

κphT . The variable κ is set to three values, {1/2, 1, 2}. Although such a choice

is rather arbitrary, it is at least a common one [10, Section 9.2.3]. It is very

important to understand, however, that varying κ is not an estimation of the

uncertainty due to the scales; it gives at best a very rough idea of how much

the results depend on the choice of scales.

The final result is

Eh
d3σ̄LO

dp3
h

=
∑
a,b,c

∫
dxadxb

dzc
zc
fa/p(xa, κp

h
T )fb/p(xb, κp

h
T )

[
Ec
d3 ¯̂σLO

dp3
c

]
Dh/c(zc, κp

h
T )

(3.5)

where the sum is over the gluon and the “active” quarks and antiquarks. A

quark is considered active if its mass is smaller than the scale Q.6

The results for π0 and photons are presented below.

3.1.1 π0

The parton distribution function CTEQ6L1 is a leading order one fitted using

αs(Q) at leading order with αs(MZ) = 0.130 and the leading order DGLAP

6Though it is thought to be correct to sum a and b, the “initial state” partons, over the
number of active flavours, the tradition (adopted here) of doing the same thing for c, which
is a “final state” parton, is probably incorrect. See [18, Section 2.3] and [19, Section II].
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Figure 3.1: π0 differential cross-section in proton-proton collisions at
√
s =

200 GeV and midrapidity compared to leading order calculations. αs(MZ) =
0.130
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evolution equation [22, Section 3.1.3]. The leading order version of the frag-

mentation function KKP is used. It should be noted that αs(MZ) was con-

sidered to be a fitting parameter in KKP, and the value obtained at leading

order is αs(MZ) = 0.1181, which differs significantly from CTEQ6L1’s value.

As the choice αs(MZ) influences the calculations through αs(Q), results are

shown for both KKP’s and CTEQ6L1’s value.

At leading order, the formula for αs(Q) can be written as

αLOs (Q) =

[
2

(
33− 2nA

12π

)
ln

(
Q

MZ

)
+

1

αs(MZ)

]−1

(3.6)

where nA is the number of active flavours.

If Q < mc ≈ 1.3 GeV/c2, nA = 3, if mc < Q < mb ≈ 4.2 GeV/c2, nA = 4

and if Q > mb, nA = 5.7

The differential cross-section Ehd
3σ/dp3

h is often rewritten using the rapid-

ity y, the transverse momentum pT and the azimuthal angle φ: (1/pT )d3σ/dydφdpT .

In proton-proton collisions, an azimuthal symmetry is expected, so φ is usually

integrated over: 1/(2πpT )d2σ/dydpT .

Experimental data come from two detectors at RHIC, PHENIX [27, 28]

and STAR [29]. All data were measured at a centre-of-mass energy of
√
s =

200 GeV. Data from PHENIX cover a range of transverse momentum pπ
0

T

between 0.616 and 18.930 GeV/c and of pseudorapidity η of |η| < 0.35. Data

from STAR cover 1.25 < pπ
0

T < 15.5 GeV/c and 0 < η < 1.

The differential cross-section 1/(2πpT )d2σ/dydpT is usually evaluated at a

rapidity8 of y = 0 and for a range of pT . This is what is done here.

Figures 3.1 and 3.2 shows the results for the two different values of αs(MZ).

The error bars represent systematic and statistical errors added in quadrature.9

Both calculations are close to the data, especially in figure 3.1 where the

curve for Q = pπ
0

T is surprisingly good. It is clear, however, that the calcula-

tions depend significantly on the scales. This scale dependence is expected to

be reduced at next-to-leading order.

7The sixth quark, the top one, is almost always ignored as its mass is very large (mt ≈
172 GeV/c2).

8The rapidity y and pseudorapidity η are equal for a massless particle and approxima-
tively equal if the momentum of a particle is much larger than its mass. See [10, Sec-
tion 39.5.2]. Since mπ0 ≈ 135 MeV/c2, it is a good approximation to take y ≈ η for π0 with
energies higher than a few GeV/c.

9There is another type of experimental uncertainties: normalisation uncertainties. They
are not shown on the figures.
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Figure 3.3: Photon differential cross-section in proton-proton collisions at√
s = 200 GeV and midrapidity compared to leading order calculations.

αs(MZ) = 0.130
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3.1.2 Photons

Photon production in hadron-hadron collisions is different from hadron pro-

duction because photons are elementary particles. As such, they can be pro-

duced directly in parton-parton collisions, without fragmentation, as well as

through fragmentation. The former are called isolated photons, and the latter

fragmentation photons.10 They are collectively known as prompt photons.

Fragmentation photons can be calculated using the same formula as for

hadrons (equation 2.8) but with a parton-to-photon fragmentation function.

Isolated photons can be calculated using equation 2.8 but with δ(z − 1) as

fragmentation function and with different Ecd
3σ̂/dk3

c : instead of a parton in

the final state, they have a photon. The Ecd
3σ̂/dk3

c term is similar to equa-

tion 3.4 and the
∣∣MLO

∣∣2 are also available in [20, Table I].

Again, CTEQ6L1 is used as leading order parton distribution function. The

parton-to-photon fragmentation function used is BFG. It should be noted that

BFG is a next-to-leading order fragmentation function, which is theoretically

correct, although it is more common to use leading order p.d.f.’s and f.f.’s in

leading order calculations.

Data are from PHENIX [31, 32] (1.18 < pγT < 4.37 GeV/c and 3.25 <

pγT < 15 GeV/c) and from STAR [33] (6.5 < pγT < 14.25 GeV/c), again at
√
s = 200 GeV.

The parameters are αs(MZ) = 0.130 (CTEQ6L1’s value) and y = 0. Set 2

of BFG is used. Figure 3.3 shows the sum of the isolated and fragmentation

photon cross-sections, and figure 3.4 shows them separately. The agreement

with the data of the sum of isolated and fragmentation photons is not as good

as it was for π0: the calculations underestimate the data for most of the pγT
range. Again, the scale dependence is significant.

3.2 Next-to-leading order

As explained previously, a next-to-leading order calculation only means that

the perturbative part of equation 2.8, Ecd
3σ̂/dk3

c , has to be computed at

next-to-leading order. Appropriate p.d.f.’s and f.f.’s must also be used.

Calculating one extra order of Ecd
3σ̂/dk3

c may seem to be a simple step

but it is actually very complicated. The kinematics changes since states with

10There seems to be some confusion about the name that should be given to what are
called here isolated photons. I chose to use the terminology from [30].
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Figure 3.5: π0 differential cross-section in proton-proton collisions at
√
s =

200 GeV and midrapidity compared to next-to-leading order calculations

three partons in the final state are now allowed, and divergences appear in some

contributions to
∣∣MNLO

∣∣2. Neither of these problems is insurmountable, but

they do complicate the calculations significantly. Because of this, all next-to-

leading order calculations in this thesis were made with incnlo11, the program

of another research group. Although it is good to know how next-to-leading

order calculations are made, it is not the main point here, and incnlo allows

to make such calculations with a limited understanding of the complicated

matter of dealing with divergences.

The differential cross-section for photons, including isolated ones, and a

variety of hadrons, including π0, can be calculated with incnlo. It is based

on [34] for isolated photon production at next-to-leading order and on [35]

for fragmentation production. It should be noted that incnlo uses a αs(Q)

with threshold matching12, not the plain αs(Q) formula like equation 3.6

that is discontinuous at every quark mass. Moreover, incnlo is limited to

phT ≥ 4 GeV/c. Finally, it can only calculate photon cross-sections with 4

active flavours (nA = 4). Unless otherwise specified, next-to-leading order

calculations are made with nA = 5 for π0 and nA = 4 for photons.

A slightly modified version of CTEQ6M, CTEQ6.1M [37], is used as parton

distribution function. It uses αs(MZ) = 0.118. The next-to-leading order ver-

11http://lappweb.in2p3.fr/lapth/PHOX FAMILY/readme inc.html
12Threshold matching is explained in [36] for example.

28



 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0  5  10  15  20

E
 d

3
σ/

d
p

3
 (

G
e
V

-2
 m

b
a
rn

 c
3
)

pT (GeV/c)

STAR (PRC 2010)
PHENIX (PRL 2007)
PHENIX (PRC 2010)

Q=0.5pT
Q=1.0pT
Q=2.0pT

Figure 3.6: Photon differential cross-section in proton-proton collisions at√
s = 200 GeV and midrapidity compared to next-to-leading order calcula-

tions

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0  5  10  15  20

E
 d

3
σ/

d
p

3
 (

G
e
V

-2
 m

b
a
rn

 c
3
)

pT (GeV/c)

STAR (PRC 2010)
PHENIX (PRL 2007)
PHENIX (PRC 2010)

Frag, Q=0.5pT
Frag, Q=1.0pT
Frag, Q=2.0pT

Isolated, Q=0.5pT
Isolated, Q=1.0pT
Isolated, Q=2.0pT

Figure 3.7: Photon differential cross-section in proton-proton collisions com-
pared to separate isolated and fragmentation next-to-leading order calculations

29



sion of KKP, in which αs(MZ) was fitted to 0.1170, is used as π0 fragmentation

function. The photon fragmentation function is BFG again. It is not indicated

in [26] what value of αs(MZ) was used in the fitting of BFG, only the value of

Λ
(4)
QCD is specified. Unfortunately, Λ

(nA)
QCD is not a uniquely defined quantity and

it is not clear how to translate it into an αs(MZ) value in this case. For both

π0 and photons, the αs(MZ) of the p.d.f. was used for the calculations.

Figure 3.5 shows the next-to-leading order calculations for π0 production

compared with the same data that were shown with the leading order cal-

culations. Figure 3.6 shows the same thing but for photons, the individual

contribution to isolated and fragmentation photons being shown in figure 3.7.

For both π0 and photons, the calculations agree with the data rather well.

The scale dependence is smaller than that of the leading order calculations, as

expected.
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Chapter 4

Hard π0 and photon production

in deuteron-gold collisions

In the previous chapter, it was shown that the leading twist, next-to-leading

order formula for single-particle inclusive cross-sections in proton-proton col-

lisions is in good agreement with data, despite a significant scale dependence

of the calculations and the sometimes large uncertainties of the data. This

good agreement indicates that production of hard particles like π0 and pho-

tons in proton-proton collisions is well understood, and that makes hard π0 and

photons promising tools to study more complex processes like nucleus-nucleus

collisions.

High-energy collisions of very large nuclei are enormously more complex

than hadron-hadron collisions. On the other hand, hadron-nucleus collisions

or collisions of nuclei in which no QGP is created are a more reasonable step

toward understanding heavy ion collisions. Hard π0 and photon data were

collected at RHIC for deuteron-gold collisions, which are not quite hadron-

nucleus collisions but almost since the deuteron is a very small nucleus. Equally

importantly, no QGP is thought to be formed in deuteron-gold collisions.

It was already mentioned in the introduction that it is not known how to

calculate with pQCD the single-particle inclusive cross-section for collisions like

deuteron-gold ones, equation 2.8 being only proved for collisions of hadrons.

However, a model based on the concept of binary scaling was developed to

bridge this gap between hadron-hadron collisions and nucleus-nucleus ones.

This model is able to describe well cross-sections of hard particles in deuteron-

gold collisions.

The Glauber model, the basis of the binary scaling hypothesis, is described
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Figure 4.1: Geometry of a nucleus-nucleus collision. Figure from [38, Figure 3]

below. How it can be combined with pQCD to calculate cross-sections in

deuteron-gold collisions is explained after.

4.1 Collisions according to the Glauber model

In the previous chapters, a formula was presented for the single-particle inclu-

sive cross-sections in a hadron-hadron collision. What was meant by “hadron-

hadron collisions” was really inelastic hadron-hadron collisions, as there is

creation of particles. The formula must thus be compared with data from

particle production in inelastic hadron-hadron collisions, as was done in the

previous section (although it was not specified).

For collisions involving larger nuclei, a classification in elastic and inelastic

collisions is not quite enough. Instead, a parameter b is used to characterise

the collisions, as shown in figure 4.1: b is the vector going from the centre1

of one nucleus, in the plane perpendicular to the collision axis (the “z” axis),

to the centre of the other one. A large b = |b| means that the nuclei barely

interact with each other, most likely an elastic collision or no collision at all,

while a small b should mean an inelastic collision. Experimentally, it is not

possible to determine the value of b at which a collision occurred, but it is

possible to classify groups of collisions in ranges of b, called centrality classes.

What is needed is thus a formula that gives a cross-section averaged over a

range of parameter b. This is a quantity calculable in the Glauber model.

What is called the Glauber model in high-energy physics is a very simplified

form of a “quantum theory of collisions of composite objects” [38, Section 2.1].

1The nuclei are assumed to be spherically symmetric since the “centre” is only well-
defined in that case, the orientation of the nuclei not being known.
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It is used in two incarnations, the optical Glauber model and the Monte Carlo

Glauber model. The latter is more precise but purely numerical, while the

former can be expressed in an analytical form. The optical Glauber model is

easier to explain and to use, and it is the one used in this thesis.

In the optical Glauber model, the differential inelastic cross-section of a

nucleus-nucleus collisions is [38, Section 2.3]

d2σABinel = d2b

[
1−

(
1− σNNinel T̂AB(b)

)AB]
(4.1)

where

T̂AB(b) =

∫
d2sT̂A(b)T̂B(s− b) (4.2)

and

T̂A(s) =
1

A

∫
dzAρA(s, zA) (4.3)

The function ρA(s, zA) represents the nucleon density of nucleus A and σNNinel

is the nucleon-nucleon inelastic cross-section, which is assumed to be the same

for every type of nucleon-nucleon collisions (proton-proton, proton-neutron,

neutron-neutron). The number of nucleons in each nucleus is denoted by A

and B, b was described previously and the geometrical interpretation of s is

shown in figure 4.1.

Taking the derivative of d2σABinel yields

E
d5σABinel

dp3
= d2bAB

(
E
d3σNNinel

dp3

)
T̂AB(b)

[
1−

(
E
d3σNNinel

dp3

)
T̂AB(b)

]AB−1

(4.4)

Equation 4.4 can be simplified by expanding the brackets in a Taylor

series:

E
d5σABinel

dp3
= d2bAB

(
E
d3σNNinel

dp3

)
T̂AB(b)

[
∞∑
n=0

(
AB − 1

n

)(
−
(
E
d3σNNinel

dp3

)
T̂AB(b)

)n]
(4.5)

If
(
Ed3σNNinel /dp

3
)
T̂AB(b) � 1, it is possible to keep only the first term in

the brackets, 1:

E
d5σABinel

dp3
= d2bAB

(
E
d3σNNinel

dp3

)
T̂AB(b) (4.6)

On the other hand, also according to the optical Glauber model, the number
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of binary nucleon collisions in the nucleus-nucleus collision is [38, Section 2.3]

Nbinary(b) = ABT̂AB(b)σNNinel (4.7)

Thus,

E
d5σABinel

dp3
= d2b

(
E
d3σNNinel

dp3

)
Nbinary(b)

σNNinel

(4.8)

Equation 4.8 is not especially useful computationally since it is T̂AB(b)

that is known in the optical model, not Nbinary(b), but it allows to express

Ed3σABinel/dp
3 in terms of easily understandable quantities: the differential

(Ed3σNNinel /dp
3) and total (σNNinel ) inelastic nucleon-nucleon cross-section and the

number of binary collisions for a given value of b.

The differential cross-section Ed3σABinel/dp
3 can be found by integrating over

the appropriate range of b, depending on the centrality class wanted. If there

is no centrality class selection, what is called minimum bias (MB), b must be

integrated over all space and the formula simplifies to〈
E
d3σABinel

dp3

〉
MB

=

(
E
d3σNNinel

dp3

)
AB (4.9)

It should be remembered that all those quantities are defined in the op-

tical Glauber model, which is an approximation of the Glauber model. The

approximation is expected to be good for large A and B and small σNNinel (or

dσNNinel ) [38, Section 2.5].

4.1.1 Binary scaling

As was seen in the previous section, it is not the measured quantity 〈Ed3σABinel/dp
3〉

that scales as the number of binary collisions, it is the differential, unmeasured

equation 4.8. In particular, the common quantity
〈
Ed3σABinel/dp

3
〉

MB
scales

with AB. All this is according to the approximative optical Glauber model.

Faith in the validity of equation 4.9 comes largely from various experi-

mental confirmations. For example, figure 4.2, taken from [39], shows that the

Drell-Yan cross-section in various proton-nucleus collisions scales with A, the

number of nucleons in the nucleus. Actually, a correction to equation 4.9 is

already introduced in that paper, an isospin correction. The aim is to correct

for the assumption that σNNinel is the same for every nucleon-nucleon collision,

an assumption that is only approximative. As can be seen in figure 4.2, the

isospin-corrected scaling is quite good.
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Figure 4.2: Scaling with A of the isospin-corrected Drell-Yan cross-section for
various proton-nucleus collisions. Figure from [39, Figure 3]

It is comparisons like this one that have made “binary scaling” such a well

accepted idea. It never works quite perfectly, but with “reasonable” modifi-

cations it can reproduce well a wide range of observations. It is important to

remember, however, that even if they do seem to work quite well, formulae like

equation 4.9 are in no way as well established as e.g. the formulae presented

in the previous chapters based on the factorisation theorems.

4.2 Deuteron-gold collisions and nuclear effects

Equation 4.9 is the starting point for calculating hard π0 and photon pro-

duction in deuteron-gold collisions. It is a very simple formula whose only

inputs are the number of nucleons and a proton-proton cross-section. With

equation 2.8 as formula for the proton-proton cross-section, equation 4.9

is in full〈
Eh

d3σABinel

dp3
h

〉
MB

= AB
∑
a,b,c

∫
dxadxb

dzc
zc

fa/A(xa, Qfac)fb/B(xb, Qfac)

×
[
Ec
d3σ̂

dk3
c

(Qren)

]
Dh/c(zc, Qfrag) (4.10)

Figures 4.3 and 4.4 shows a comparison of equation 4.10, calculated at

next-to-leading order, with data. The parameters used for the calculations
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are the same as in section 3.2. Data2 for hard π0 production in deuteron-gold

collisions come from STAR [33] and PHENIX [28, 40]. Data for photon pro-

duction come from the same paper from STAR, and there are also preliminary

data from PHENIX [41]. A further set of preliminary data from PHENIX [44],

extracted using the dilepton (virtual photon) yield as in [31], is included. All

data are at
√
sNN = 200 GeV, which means that the centre-of-mass energy

per nucleon is 200 GeV.

The π0 data are well described by equation 4.10. The calculations seems

to underestimate the photon data, especially at low pγT , but definitive conclu-

sions are difficult to draw due to the much larger uncertainties on the data.

Comparisons with the cross-sections are not the best way to study the

agreement of equation 4.10 with data. It is possible to study another quan-

tity that provides similar information as figures 4.3 and 4.4. This quantity is

the nuclear modification factor.

4.2.1 Nuclear modification factor and the isospin effect

For minimum bias collisions, the nuclear modification factor is defined as

〈RAB〉MB =

〈
E
d3σABinel

dp3

〉
MB

AB
(
E
d3σppinel
dp3

) (4.11)

If the numerator is taken to be equal to equation 4.10, the calculated

value of equation 4.11 is 1, assuming that both the numerator and the

denominator are calculated with the same parameters (p.d.f., f.f., αs(MZ),

scales, . . . ). As such, a plot of 〈RAB〉MB with experimental values provides

similar information as figures 4.3 and 4.4, that is, whether or not nucleus-

nucleus collisions are equivalent to binary scaled proton-proton collisions.

Data for 〈RAB〉MB are presented in figures 4.5 and 4.6. As it can be seen,

both STAR data for π0 [33] and preliminary PHENIX data for photons [41]

have very large uncertainties and are of limited use. On the other hand,

2Data from [40] and [41] are not presented as cross-sections but rather as a quantity
called the yield, generally noted N . For minimum bias data, the yield is related to the
cross-section by

d3NAB =
1

σABinel

d3σAB

where σABinel is the total inelastic cross-section of the collision [42]. Here, the value of σdAuinel

used to translate yields in cross-sections is 2.26 barn [28, 43].
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PHENIX data for π0 [28] have smaller uncertainties and can be expected to

provide some constraints on necessary modifications to equation 4.10. For

this reason, what follows will be focused on π0, although photon data and

calculations will still be presented.

Data in figure 4.5 suggests that the measured 〈RAB〉MB is slightly larger

than 1 (enhancement) in the lower range of pπ
0

T but decreases below 1 (sup-

pression) around pπ
0

T ≈ 9 GeV/c. The last data points, which shows a possible

increasing trend, are ignored due to the larger uncertainties and the small

number of points. The apparent suppression in the first data points is also ig-

nored as it is in a range where the reliability of pQCD calculations is expected

to be questionable. The hypothesis investigated is that the enhancement in

the pπ
0

T ≈ 4 to 9 GeV/c range and the subsequent suppression above 9 GeV/c

is caused by nuclear effects.

A first correction to equation 4.10 that should be expected is the isospin

effect, which was mentioned in the previous section. The isospin effect is not

really a nuclear effect, it is only a correction for the incorrect assumption that

all nucleon-nucleon collisions have the same cross-section.

It is possible to correct that assumption, at least in part, in a simple manner

by defining an isospin-averaged p.d.f.:

f̄a/A(x,Q) =
Z

A
fa/p(x,Q) +

A− Z
A

fa/n(x,Q) (4.12)

where A is the number of nucleons, Z is the charge of nucleus A, fa/p(x,Q) is

a proton p.d.f. and fa/n(x,Q) a neutron one.

Neutron p.d.f.’s are related to proton ones by the isospin symmetry, an

approximative but quite good symmetry [6, Section 9.2.3]. According to that

symmetry, the relations between neutron and proton p.d.f.’s are

fu/n(x,Q) = fd/p(x,Q); fd/n(x,Q) = fu/p(x,Q)

fū/n(x,Q) = fd̄/p(x,Q); fd̄/n(x,Q) = fū/p(x,Q)

fa/n(x,Q) = fa/p(x,Q) for all other partons

(4.13)

Using f̄a/A(x,Q) to calculate equation 4.10 in equation 4.11 results in

the curves shown in figures 4.5 and 4.6. It can be seen that the isospin effect

decreases the photon cross-section notably. The effect on π0 is insignificant,

the curves being almost equal to 1 for the whole range of pπ
0

T . This is in part

due to the fact that the quark content of π0 is isospin invariant.

Thus, although the isospin effect is a required modification to equation 4.10,
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it does not improve the agreement of the calculations with data. Figures 4.5

and 4.6 show something very interesting about the calculations however: the

scale dependence of calculations using equation 4.11 seems to be significantly

reduced with respect to that of calculated cross-sections like those shown in

figures 4.3 and 4.4. This much smaller scale dependence is a very interesting

characteristic of 〈RAB〉, but it deserves some explanations.

The formula used to calculate the numerator of equation 4.11 is equa-

tion 4.10 with isospin-corrected p.d.f.’s. As equation 4.10 is based on

the proton-proton cross-section formula, which is the denominator of equa-

tion 4.11, the fact that the scale dependence seems to largely cancel is some-

what understandable, though not obvious. In the rest of this chapter and in

the following one, further modifications will be made to the formula for the

deuteron-gold cross-section but it will be seen that the scale dependence of

〈RdAu〉 remains very small, a fact that is again not obvious from a theoretical

point of view remembering that the scale dependence of the formulae for the

cross-sections is rather complicated. It is not clear if this small scale depen-

dence of 〈RdAu〉 is real or is an artifact of the specific choice of formula used

for the deuteron-gold cross-section: the possibility that the scale dependence

is merely underestimated and not actually reduced cannot be ruled out.

Another choice that may hide the real scale dependence is the use of the

same scales in both the numerator and the denominator; that is, the scales

that enter the cross-sections are varied by factors of two simultaneously in the

numerator and the denominator. It is not clear if this is correct or if they

should be varied independently, which would likely result in an increased scale

dependence. This warning and the previous one about the reliability of the

estimate of the scale dependence of 〈RdAu〉 must be kept in mind when it is

said that the scale dependence is small and in particular smaller than that of

the cross-section calculations.

It is now necessary to turn to other sources of nuclear effects to see if

agreement with data can be improved.

4.2.2 Nuclear parton distribution functions

Even with the isospin effect taken into account, equation 4.10 remains a

very simple formula for explaining hard particle production in deuteron-gold

collisions, a process that is, after all, not that simple with respect to hadron-

hadron collisions. As was seen in figures 4.5 and 4.6, it is difficult to tell from
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the current data if hard π0 and photon production in deuteron-gold collisions

can really be explained well by isospin-corrected binary scaling alone. There

are some indications from pπ
0

T data, however, that this is not the case.

There are a number of proposed sources of nuclear effects. Many are ex-

plained in [45], a comprehensive review on the subject. Here, instead of trying

to take into account nuclear effects with various theoretical models, a phe-

nomenological approach is taken. Nuclear effects are assumed to be absorbed

in nuclear parton distribution functions, the equivalent of proton parton distri-

bution functions for nuclei. To understand what are nuclear p.d.f.’s and what

kinds of nuclear effects they take into account, it is necessary to understand

how they are defined.

The core assumption in the definition of nuclear p.d.f.’s is that the fac-

torisation theorems also apply, at least to a good approximation, to processes

involving nuclei. That is, it is assumed that the formulae for the cross-section

of processes like nuclear deep-inelastic scattering, or Drell-Yan or hard particle

production in nucleus-nucleus collisions can also be expressed as the convolu-

tion of parton distribution functions, a perturbative part and in some cases

a fragmentation function. The fragmentation function is usually assumed to

be the same as for hadron-hadron collisions, but the p.d.f. is now a nuclear

parton distribution function. Binary scaling is also assumed and the isospin

effect is generally included too.

According to those assumptions, the minimum bias single-particle inclusive

cross-sections for a nucleus-nucleus collisions is thus defined as

Eh
d3σinel

AB

dp3
h

= AB
∑
a,b,c

∫
dxadxb

dzc
zc
Fa/A(xa, Qfac)Fb/B(xb, Qfac)

×
[
Ec
d3σ̂

dk3
c

(Qren)

]
Dh/c(zc, Qfrag) (4.14)

where Fa/A(x,Q) is the nuclear p.d.f. for a nucleus A. As nuclear p.d.f.’s

are assumed to be universal just as hadron p.d.f., they can be measured in

other processes like electron-nucleus collisions and Drell-Yan in nucleus-nucleus

collisions. Various parametrisation of nuclear p.d.f. are available, EKS98 [46],

nDS [47], HKN07 [48] and EPS09 [49] being recent ones.

Equation 4.14 is appealing as it includes binary scaling and the isospin

effect, but also promises to include all other significant nuclear effects into the

nuclear parton distribution function. It is important to remember, however,
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that some of the assumptions that led to equation 4.14 are debatable. The

universality of the nuclear p.d.f.’s is not proven, only assumed, and it is not

clear that all nuclear effects, which have very different origins, can really be

taken into account by nuclear p.d.f.’s.

The assumption that nuclear p.d.f.’s are universal is actually testable to

some extent: the data used to define nuclear p.d.f.’s are from different processes,

and if the data can be fitted well assuming factorisation in collisions involving

nuclei, it is an indication that assuming factorisation may be at least a good

approximation. Also, if some nuclear effects are significant and really cannot

be included in the nuclear p.d.f., it should lead to problems in the fitting

process. Of course, what is a good fit is also debatable. Another method of

assessing the universality of nuclear p.d.f.’s has been proposed in [50].

It is clear that the “nuclear p.d.f. approach” comes with great promises but

potentially very serious flaws. These possible weaknesses are not investigated

in this thesis; the nuclear p.d.f. approach is used and assumed to be usable for

the rest of this work. Results are presented in the next section.

4.3 Comparison with data

Calculating equation 4.11 with equation 4.14 as numerator is fairly straight-

forward. The parameters are fixed the same way as in section 3.2: Qfac =

Qren = Qfrag = κphT (κ ∈ {1/2, 1, 2}), y = 0,
√
sNN = 200 GeV, KKP-NLO is

used as π0 fragmentation function, BGF-2 as photon fragmentation function

and αs(MZ) is taken to be the value used in the parametrisation of the nuclear

p.d.f.

Two different nuclear p.d.f.’s are used, HKN07 and EPS09. Both are avail-

able at leading order and next-to-leading order, but are used at NLO. The

older EKS98 is not used as it is only available at LO. It has not been possible

to use nDS for technical reasons. It should be noted that EPS09 used as data

sets hard π0 data from deuteron-gold collisions at RHIC — the very data with

which the present calculations of 〈Rπ0

dAu〉MB are compared with. However, as

figure 4.7 shows, 〈Rπ0

dAu〉MB calculated at leading order with EPS09 and EKS98

are almost identical. Since EKS98 did not use any RHIC data as data set, it

indicates that the inclusion of π0 data from RHIC in EPS09 does not affect sig-

nificantly the calculation of 〈Rπ0

dAu〉MB. This is a rather surprising conclusion,

but a very fortunate one as EPS09 would have been unusable if it had been
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significantly biased. It has been verified that the same is true for 〈Rγ
dAu〉MB.

Another interesting feature of figure 4.7 is that the leading order and next-

to-leading order calculations of 〈Rπ0

dAu〉MB with EPS09 are very similar. It

indicates that 〈Rπ0

dAu〉MB can be calculated to a good precision at leading order.3

It should be noted that the same parameters that are used to calculate

equation 4.14 are used for the calculation of the proton-proton cross-section,

the denominator of equation 4.11. This of course means same choice of

αs(MZ), f.f. and so on. For the p.d.f.’s, it means that the p.d.f.’s used for

the proton-proton calculations are the reference p.d.f.’s4 that were used in the

fitting of the nuclear p.d.f.’s. This means CTEQ6.1 for EPS09. For HKN07,

there is a subtlety. The reference p.d.f. of HKN07 is MRST98 [51]. However,

HKN07 treats heavy quarks in a different manner than MRST98. A proton

p.d.f. based on MRST98 but slightly different is thus included with HKN07,

3This is only an interesting, though widely known, observation. All calculations of
〈RdAu〉MB were still made at NLO.

4Nuclear p.d.f.’s are generally parametrised as a factor times a proton p.d.f.: Fa/A(x,Q) =
Ra/A(x,Q)fa/p(x,Q). (nDS uses a different approach) It was shown in [46] that Ra/A(x,Q)
seemed only “moderately sensitive” to the choice of reference proton p.d.f., and it became
quite common to use Ra/A(x,Q) with different p.d.f.’s than the reference one. This seems
to be an unnecessary approximation, however, and here nuclear p.d.f.’s are always used with
their reference p.d.f.
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and this is the p.d.f. that was used to calculate the proton-proton cross-section

when HKN07 was used as nuclear p.d.f.5

The isospin effect is not taken into account in the same way for EPS09 and

HKN07. It is already included in HKN07, while it must be added to EPS09.

Results are presented in figures 4.8 and 4.9.6 For π0, at lower pπ
0

T , calcula-

tions with EPS09 are in good agreement with data. For HKN07, the agreement

is not as good as for EPS09 in the lower pπ
0

T but is still reasonable. Neither cal-

culation reproduces the apparent suppression around pπ
0

T = 9 GeV/c, although

the calculations with EPS09 does slightly decrease as pπ
0

T increases. The trend

for HKN07 is the opposite, it slightly increases with pπ
0

T . This difference causes

the calculations to diverge from each other in the higher range of pπ
0

T , but the

uncertainties on the data are too large to tell if one parametrisation of nuclear

effects is better than the other.

For photons, both calculations are almost equal at the lowest pγT (around 4

GeV/c) but they diverge from each other as pγT increases. At pγT ≈ 20 GeV/c,

the calculation with HKN07 is about 60% larger than the calculation using

EPS09. The origin of this surprising disagreement of the calculations has not

been identified. The uncertainties on the data are currently too large to tell if

one calculation agrees better with the data than the other.

It is not surprising that no conclusion can be drawn from the photon cal-

culations, but interestingly it is also difficult to conclude anything from the π0

calculations despite the significantly smaller uncertainties on the data. The

main reason is that the deviations of 〈Rπ0

dAu〉MB from 1 are small with respect

to the uncertainties on the data and to the effect of the nuclear p.d.f.’s on

the calculations, which are both of the order of 10%. To some extent, using

nuclear p.d.f.’s does seem to lead to some enhancement at small pπ
0

T , but there

is no sign of a suppression around 9 GeV/c. It thus cannot be concluded that

adding nuclear effects through nuclear p.d.f.’s improves the agreement of the

calculations with the data.

There can be many explanations for that conclusion. A first one is that

the uncertainties on the calculations (exemplified by the difference in the cal-

culations made with different nuclear p.d.f.’s) and on the data are simply too

large to really expect them to agree perfectly. Assuming the values of the data

points and the calculations to be reliable, another obvious explanation is that

5I thank Dr Masanori Hirai and Shunzo Kumano for their help with that matter.
6Reference [49] contains a figure (figure 11) almost identical to figure 4.8 but with error

bars on the EPS09 calculation.
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nuclear p.d.f.’s are actually not universal and that the approach is intrinsically

flawed. A third possibility, that is investigated in the next chapter, is that

nuclear p.d.f.’s do not take into account all possible nuclear effects and more

ingredients need to be added to the model to describe the data.

The next chapter is devoted to a very specific type of nuclear effects, that

is assumed not to be included into nuclear p.d.f.’s: parton energy loss in cold

matter.
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Chapter 5

Hard parton energy loss in

deuteron-gold collisions

In the previous chapters, it was shown that the single-particle inclusive dif-

ferential cross-sections for photons and π0 in proton-proton collisions can be

well-described by a pQCD-based formula, equation 2.8. It was then showed

that even if no pQCD-based formula is known to calculate the same quantity

in nucleus-nucleus collisions, a model based on the proton-proton formula and

on binary scaling can reproduce well the single-particle inclusive differential

cross-sections for photons and π0 in deuteron-gold collisions. It was shown in

figure 4.5, however, that by looking at the nuclear modification factor instead

of the cross-section, π0 data suggests a possible disagreement of the data with

simple binary-scaled predictions. It was assumed that nuclear effects could

be at the origin of this disagreement, but the inclusion of nuclear effects with

nuclear p.d.f.’s did not lead to significant improvements.

The hypothesis investigated in this final chapter is that if the agreement

of data with the calculations is not satisfactory, it is because further nuclear

effects need to be taken into account. Parton energy loss in cold matter is the

additional effect that is studied here.

Parton energy loss is a well-known phenomenon in heavy ion physics. It is

easier to use the parton model, which was mentioned in the introduction, to

describe what “parton energy loss” means in a nucleus-nucleus collision. Fig-

ure 5.1 represents a hadron-hadron and a nucleus-nucleus collision according

to the parton model. The picture of the hadron-hadron collision describes just

the same thing as figure 1.2 in the introduction: a parton from each hadron

interacts, then propagates and fragments. Nucleus-nucleus collisions are very
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Figure 5.1: Schematic comparison of hadron-hadron (left) and nucleus-nucleus
(right) collisions. Figure from [52, Figure 1]

similar, but figure 5.1 points out an important difference: between the initial

hard interaction of the partons (the momentum Q exchange) and the fragmen-

tation, the partons no longer propagate in the vacuum, they now interact with

the quark-gluon plasma. The results of this interaction is an energy loss for

the partons, which is reflected in the energy of the detected jets and hadrons.

This is called “jet quenching”.1

A deuteron-gold collision is not a heavy ion collision. In particular, no QGP

is created, at least not at centre-of-mass energies of a few hundred GeV. Energy

loss is still possible, however, as interaction with the QGP is not the only way

for partons to lose energy, they can also interact with the cold nuclear matter.2

For hadron-nucleus collisions, the “cold nuclear matter” basically means the

partons of the nucleus [53, Section IV].

To study the influence of energy loss in deuteron-gold collisions, it is pos-

sible to use the tools developed to study parton energy loss in heavy ion colli-

sions, a field of research that is very active. The usual framework is to use the

1More precisely, the term “jet quenching” refers to the experimental observation that
proportionally less hard jets are detected in heavy ion collisions than in proton-proton
collisions. Parton energy loss is the mainstream theoretical explanation for this observation,
but it is not ruled out that other phenomenons play a role, maybe small, in jet quenching
in heavy ion collisions.

2It should be noted that although parton energy loss is the only hypothesis studied here,
there are many other hypotheses, depending on the process and the kinematic range under
investigation, that can explain jet quenching in cold matter. See [53, Section I]. In particular,
hadron energy loss may play a role.
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following formula for the cross-section with energy loss:〈
Eh

d3σinel
AB

dp3
h

〉
MB

= AB
∑
a,b,c

∫
dxadxb

dzc
zc
Fa/A(xa, Qfac)Fb/B(xb, Qfac)

×
[
Ec
d3σ̂

dk3
c

(Qren)

]
D̃h/c(zc, Qfrag) (5.1)

This formula is basically equation 4.10 with a medium-modified fragmen-

tation function, D̃h/c(z,Q), in which all effects of final state parton energy loss

are assumed to be absorbed. Various models have been developed to describe

parton energy loss in QGP. A review of the main ones is presented in [54,

Section 3]. Some of these models are expected to be applicable to cold matter

energy loss, or even to work better in that case [55, Section 6.3]. However,

those models are very complex and a simpler approach is taken here.

5.1 Simple model of parton energy loss

As a simple model of parton energy loss, it is assumed that every parton loses

a fraction ε0 or an absolute amount E0 of its energy as it interacts with the

cold matter. The medium-modified fragmentation function for this model is

D̃h/c(z,Q) =
1

1− ε0
Dh/c

(
z

1− ε0
, Q

)
(5.2)

or

D̃h/c(z,Q,Ei) =
1

1− E0/Ei
Dh/c

(
z

1− E0/Ei
, Q

)
(5.3)

where Ei is the energy of the parton immediately after the hard collision.3

The above model is too simple to realistically describe parton energy loss,

but it is a good starting point and it can give a rough idea of the effect of parton

energy loss on hard particle production. Results are presented in figures 5.2

and 5.3 for π0 and in figures 5.4 and 5.5 for photons, for various values of ε0

and E0. The values were set with respect to the π0 data, and were used for

both photons and π0. Different values were used for EPS09 (figures 5.2 and

5.4) and HKN07 (figures 5.3 and 5.5). For clarity, only one choice of scales is

3This simple approach can be seen as a simplification of the “quenching
weights” energy loss models where the modified fragmentation function is D̃(z,Q) =∫ (1−z)Ei

0
dEP(E) 1

1−E/Ei
D
(

z
1−E/Ei

, Q
)

. The quenching weight P(E) is an “energy loss

probability distributions” [55, Section 6.2]. The model used here is equivalent to using the
oversimplified probability distributions P(E) = δ(E − ε0Ei) and P(E) = δ(E − E0).
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shown, Qfac = Qren = Qfrag = pT .

It can be seen for π0 data that a relative energy loss (equation 5.2) has

very little effect on the shape of the calculations, it mainly changes the nor-

malisation of 〈RdAu〉MB. On the other hand, an absolute energy loss (equa-

tion 5.3) suppresses 〈RdAu〉MB much more at low pT than at higher pT .

The values of energy loss that seem reasonable for π0 result in a very

small effect of energy loss on the photon 〈RdAu〉MB. This could be expected as

isolated photons, which contribute significantly to the photon cross-section, are

unaffected by parton energy loss. The curves labelled “complete energy loss”

in figures 5.4 and 5.5 illustrate this fact: they represent 〈RdAu〉MB assuming no

contribution from fragmentation photons to the deuteron-gold cross-sections,

that is, a 100% parton energy loss. To some extent, this can be seen as a lower

limit to parton energy loss. The fact that the uncertanties on photon data

include those lower limit curves on almost the whole range of pγT is a good

indication of how little information on energy loss can be obtained from the

present data.

In the case of the better π0 data, it is not clear that energy loss can improve

the agreement of the calculations with data. Actually, it depends on the range

of pπ
0

T that is looked at. Before even looking at this, however, it is interesting

to compare the proposed amount of energy loss with a more realistic extraction

of energy loss based on experimental data.

5.2 Comparison with another model of energy

loss

It is possible to relate parton energy loss in hadron-nucleus collisions to par-

ton energy loss of a similar observable in another process: jet or hadron pro-

duction in electron-nucleus collisions. This observable can be called nuclear

semi-inclusive deep-inelastic scattering (nSIDIS) in reference to semi-inclusive

deep-inelastic scattering (SIDIS), the observable where jet or hadron produc-

tion is studied in electron-hadron collisions. Figure 5.6 illustrates how parton

energy loss is related in nSIDIS and hadron-nucleus collisions. On the left is

illustrated a parton propagating in a nucleus, then undergoing a hard interac-

tion, propagating out of the nucleus and finally fragmenting into hadrons. It

represents the production of a jet in a hadron-nucleus collision. The process
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Figure 5.6: Diagrammatic comparison of hadron-nucleus collisions (left) and
semi-inclusive nuclear deep-inelastic scattering (right). Figure modified from
[55, Figure 43]

on the right, which describes a nSIDIS, is the same except that it is an electron

instead of a parton that propagates in the nucleus.

According to figure 5.6, the difference between the two processes is what

happens before the hard collision (denoted by an “H” on the figure). This is be-

cause in a nucleus-nucleus collision the incoming parton has a large probability

of interacting with the nucleus before the hard collision, while this probability

is very small for the incoming electron in nSIDIS. The interactions happening

before the hard collision are called “initial state effects”. Those happening af-

ter the hard collision are called “final state effects”, which means that parton

energy loss is a final state effect.

Figure 5.6 shows that final state effects should be the same in nSIDIS and

hard particle production in nuclear-nuclear collisions, which is why it should be

possible to compare parton energy loss from those processes. This approach is

exactly the one used in [53]: using a more advanced model of energy loss than

what was used in the previous section and a value of cold matter energy loss

extracted from nSIDIS data, RdAu with parton energy loss is calculated, with

no free parameter 4, for charged pions at various rapidities. The midrapidity

calculation is shown in figure 5.7a.

It is possible to compare the parton energy loss shown in figure 5.7a to

a calculation made with equation 5.3 as modified f.f. by simple graphical

comparison, that is by finding the value of E0 that reproduces figure 5.7a as

well as possible. Equation 5.3 is chosen over equation 5.2 as it reproduces

better the shape of the curve of figure 5.7a. The parameters used for the

comparison are the same as in section 4.3 except that no nuclear p.d.f. is used

4All the free parameters are fixed experimentally or related to others by models. This
absence of free parameters thus probably comes with a heavy model dependence.
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Figure 5.7: Comparison of the result of [53] (left) and calculations of energy
loss with equation 5.3 as medium modified fragmentation function (right).
See text for details. Figure 5.7a modified from [53, Figure 6]

as none is used in [53].5

As illustrated in figure 5.7, the calculation of [53] is contained on most of the

pπ
0

T range between the calculations made with equation 5.3 using E0 = 0.07

and 0.13 GeV, with a middle value of E0 ≈ 0.1 GeV. As the calculation of

[53] is related to nSIDIS results, a value of E0 ≈ 0.1 GeV can be viewed as

an estimate of E0 extracted, although quite indirectly, from a measurement of

parton energy loss in nSIDIS. This extraction is very approximative, but it is

able to constrain the magnitude of E0 to realistic values.

5.3 Analysis

As mentioned before, using equation 5.2 as medium-modified f.f. does not

modify significantly the shape of 〈RdAu〉MB. The more advanced model of en-

ergy loss in [53] has a similar effect as equation 5.3, that is, it suppresses

lower pπ
0

T more than higher ones. The effect is monotonical and smooth, how-

ever, and cannot explain the suppression hinted by π0 data at pπ
0

T & 9 GeV/c.

The extraction of E0 in the previous section does suggest that there should

be a small but noticeable parton energy loss in deuteron-gold collisions. Indeed,

an energy loss corresponding to E0 ≈ 0.1 GeV is roughly the maximum parton

energy loss that the deuteron-gold data under study seem to be able to ac-

5Unfortunately, the choice of p.d.f., f.f., scales and so on is not clearly specified in [53].
As they have little effect on the nuclear modification factor (since they enter in both the
numerator and the denominator), this is not expected to be a problem, however.
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commodate. This can be inferred from the low pπ
0

T data (pπ
0

T ≈ 4 to 9 GeV/c),

which have the smallest uncertainties. With an energy loss of E0 ≈ 0.1 GeV,

the EPS09 calculation would still be within the experimental uncertainties, but

the HKN07 calculation would graze the lower boundary of the uncertainties,

or would be slightly below them. Energy loss in nSIDIS and deuteron-gold

collisions thus seem to be marginally compatible, or there may even be a hint

of disagreement, but it is clear that further comparisons with better models of

parton energy loss and improved comparisons with nSIDIS data are required.6

The question of the possible improvement of the agreement of calculations

with data by the addition of energy loss is interesting, but the answer is very

speculative. According to the simple model used, the addition of energy loss,

be it E0 ≈ 0.1 GeV or larger, does not improve the overall agreement with

data. The trend of the data at pπ
0

T > 9 GeV/c agrees better with calculations

that include a fairly large energy loss (E0 ≈ 0.3–0.5 GeV), but this comes with

a complete disagreement with the lower pπ
0

T data. If new data confirm this

increasing trend at high pπ
0

T , it would be interesting to investigate this effect

further. In the absence of such an incentive, however, there seems to be little

reason, according to the results obtained here, to expect that calculations of

〈RdAu〉MB can be improved by adding parton energy loss. This conclusion will

have to be verified by other studies with better models of energy loss.

6The assumption that parton energy loss is not included in nuclear p.d.f.’s may also be
questioned. If it turns out that the effect of energy loss is already, in part or completely,
included in nuclear p.d.f.’s, using both nuclear p.d.f.’s and a value of energy loss extracted
from nSIDIS would account twice for the same effect.
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Chapter 6

Conclusion

Leading twist, next-to-leading order calculations of hard photon and π0 cross-

sections in proton-proton collisions were shown to agree very well with data

measured at RHIC. Hard photon and π0 cross-sections in deuteron-gold col-

lisions, also measured at RHIC, were shown to be well described by a model

based on the optical Glauber model and the formula used for proton-proton

cross-sections. Calculating 〈RdAu〉MB showed, however, that there may be a

small but noticeable disagreement of the calculations with data, at least for

π0. Neither the use of nuclear parton distribution functions nor the addition

of parton energy loss in cold matter through a simple model succeeded in sig-

nificantly improving the agreement of 〈RdAu〉MB with data. The comparison

of parton energy loss in deuteron-gold collisions with that of electron-nucleus

collisions was inconclusive.

A key ingredient that is missing everywhere in this work is theoretical

uncertainties. All the above conclusions are drawn from comparisons of theo-

retical calculations without uncertainties against data with uncertainties1. If

theoretical uncertainties were added, it is likely that some conclusions would

have to be modified. Adding theoretical uncertainties is not a simple task, not

even for cross-sections in proton-proton collisions. But as seen in the fourth

chapter, deviations of 〈RdAu〉MB from binary scaling are small, below 10%, and

uncertainties larger than that are quite possible. If theoretical uncertainties

turn out to be large, it may not be worthwhile to try to improve the agreement

of 〈RdAu〉 with data by adding additionnal ingredients like parton energy loss

to the calculation; it might be wiser to try to lower the uncertainties, or to try

a different approach.

1Modulo normalisation uncertainties.
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On the other hand, if uncertainties are well under control, it would be

very interesting to see what ingredients are needed to better describe 〈RdAu〉.
It would also be of interest to see whether or not binary scaling is the best

starting point, or if the pQCD-based formulae for hadron-hadron collisions can

be extended to hadron-nucleus and nucleus-nucleus collisions. Or if a semi-

phenomenological approach using nuclear p.d.f.’s is actually that good of an

idea. Even parton energy loss, which seems unlikely to be the only missing

ingredient according to the results of this thesis, might still be an important

one. If this turns out to be the case, studying cold matter energy loss might

prove to be a much better testing ground for energy loss formalisms than heavy

ion collisions.

Fresh results from the Large Hadron Collider may provide answers to some

of these questions; actually, the kinematic range probed at the LHC is so

different from RHIC’s that the new data may even provide answers without

any calculations of theoretical uncertainties. As far as RHIC is concerned,

however, the future of studies of 〈RdAu〉 seems to hinge critically on reliable

estimates of theoretical uncertainties.
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