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From impact geometry to momentum anisotropy
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Based on figures by Derek Teaney, CMS Coll., MADAI, H. Elfner and J. Bernhard 𝑣
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ALICE Coll. 
PRL 2011

Pb-Pb 𝑠𝑁𝑁 = 2.76 TeV

 Spatial anisotropy from partial overlap of nuclei & fluctuation 

 Interactions transfer spatial anisotropy into momentum one

 Rapid development of momentum anisotropies consistent with strongly-coupled system

“Elliptic flow”
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ALICE Coll. 
PRL 2011

Pb-Pb 𝑠𝑁𝑁 = 2.76 TeV

“Elliptic flow”

Luzum and 
Romatschke
(2009) PRC

Effect of shear viscosity on 𝑣2𝑣
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(Shear viscosity inversely 
related to strength of 

interaction)



Shear and bulk viscosity of strongly-coupled quark-gluon plasma
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 Constrain temperature dependence of 
shear viscosity?

 Minimum value?

 Where is the minimum?

 Increase at low and high temp.?

 Study bulk viscosity and constrain its 
temperature dependence?

 Peak?

Modified from the Hot QCD White Paper 2015
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JETSCAPE Collaboration, (2021) PRC, PRL

Nijs, van der 
Schee, Gürsoy, 
Snellings (2021) 
PRC, PRL

Similar results from Parkkila, Onnerstad, Kim (2021) PRC

Bernhard, Moreland, Bass (2019) Nat.Phys.
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JETSCAPE Collaboration, (2021) PRC, PRL

Nijs, van der Schee, Gürsoy, 
Snellings (2021) PRC, PRL

Parkkila, Onnerstad, Kim 
(2021) PRC: 𝜁/𝑠 < 0.03

Bernhard, Moreland, Bass (2019) Nat.Phys.
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Shear viscosity calibrations

Bulk viscosity calibrations



Shear viscosity of strongly-coupled quark-gluon plasma
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JETSCAPE Collaboration, (2021) PRC, PRL

Favoured by data

Modified from the Hot QCD White Paper 2015



OUTLOOK ON CONSTRAINING THE VISCOSITIES:
BEYOND THE CURRENT “STANDARD MODEL” OF COLLISIONS



Multistage simulations of heavy ion collisions
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Based on figures by Derek Teaney, CMS Coll., MADAI, H. Elfner and J. Bernhard

▪ Energy-momentum tensor of plasma:

▪ Conservation of energy and momentum:

▪ Mueller-Israel-Stewart-type relativistic viscous hydrodynamics

𝑇𝜇𝜈 = 𝜖𝑢𝜇𝑢𝜈 − 𝑃(𝜖) + Π (g𝜇𝜈−𝑢𝜇𝑢𝜈) + 𝜋𝜇𝜈

𝜕𝜈𝑇
𝜇𝜈 = 0

𝜏Π ሶΠ + Π = −𝜻(𝑇) 𝜕𝜇 𝑢
𝜇 + (2nd order);𝜏𝜋Δ𝛼𝛽

𝜇𝜈
ሶ𝜋𝛼𝛽 + 𝜋𝜇𝜈 = 2 𝜼(𝑇)(𝜕𝜇𝑢𝜈 +⋯) + (2nd order);

Early dynamics Hadronic transportEnergy deposition

Hydrodynamics



Beyond the current “standard model” of collisions
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Based on figures by Derek Teaney, CMS Coll., MADAI, H. Elfner and J. Bernhard

Early dynamics Hadronic transportEnergy deposition Hydrodynamics

 Theoretical uncertainties limit accuracy of constraints on viscosity
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Beyond the current “standard model” of collisions
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Based on figures by Derek Teaney, CMS Coll., MADAI, H. Elfner and J. Bernhard

Early dynamics Hadronic transportEnergy deposition Hydrodynamics

 Theoretical uncertainties limit accuracy of constraints on viscosity

 Need smooth transition between stages of collision

J-F PAQUET (VANDERBILT UNIVERSITY)



Smooth transition between models and their viscosities
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Early dynamics Hadronic transportHydrodynamics

Rose, Torres-Rincon, Schäfer, 
Oliinychenko, Petersen (2018) 
PRC

Ghiglieri, Moore, Teaney (2018) JHEP

Interacting hadronic gas for 
𝑇 < ∼ 150 MeV

Weakly-coupled quark-gluon 
plasma at high temperature

𝜂/𝑠

0.1

Temperature [GeV]0.08 0.18

10

1



OUTLOOK ON CONSTRAINING THE VISCOSITIES:
EXPERIMENTAL AND THEORETICAL COLLABORATIONS



Leverage observables that target specific stages
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Energy deposition

Giacalone, Gardim, Noronha-Hostler, Ollitrault (2020) PRC

ALICE Coll. (2022) PLB

Constraining 
energy 
deposition:
See J. Jia’s 
talk on Sat.



Considering theoretical uncertainties of observables
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 Viscosity is probed through the hydrodynamic phase

Early dynamics Hadronic transportEnergy deposition Hydrodynamics

𝜕𝜈𝑇
𝜇𝜈 = 0; 𝑇𝜇𝜈 = 𝜖𝑢𝜇𝑢𝜈 − 𝑃(𝜖) + Π (g𝜇𝜈−𝑢𝜇𝑢𝜈) + 𝜋𝜇𝜈

JETSCAPE Collaboration, (2021) PRC, PRL

𝑇𝜇𝜈 =෍

𝑛

𝑔𝑛∫
𝑑3𝑃

2𝜋 3𝑃0
𝑃𝜇𝑃𝜈 𝑓𝑛 𝑃

Hadron momentum distributions; 
deviate from Fermi-Dirac/Bose-
Einstein distribution

J-F PAQUET (VANDERBILT UNIVERSITY)



Considering theoretical uncertainties of observables
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 Viscosity is probed through the hydrodynamic phase

Early dynamics Hadronic transportEnergy deposition Hydrodynamics

𝜕𝜈𝑇
𝜇𝜈 = 0; 𝑇𝜇𝜈 = 𝜖𝑢𝜇𝑢𝜈 − 𝑃(𝜖) + Π (g𝜇𝜈−𝑢𝜇𝑢𝜈) + 𝜋𝜇𝜈

Reduced modelling uncertainties for energy/momentum-
based observables (e.g. transverse energy)

[ Analogy: inclusive and exclusive observables in p-p collisions ]

 Also, consider the objective of the measurement

 E.g. smaller systems (p+A) to push our understanding

 Larger central collisions to constrain viscosity



OUTLOOK ON CONSTRAINING THE VISCOSITIES:
MULTIMESSENGER



Beyond soft hadrons: electromagnetic probes
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 Photons (𝛾) and dileptons (𝑙+𝑙−) are “holistic” probes:
produced at all stages, reflects the local properties of the plasma

Considerable progress over past decade:

 Emission rates studied at NLO and on 
lattice

 Pre-equilibrium photons & dileptons

 𝛾 & 𝑙+𝑙− from hadronic transport

Considerable opportunities with 
more&better data

Hadrons

Hadrons

Hadrons

Hadrons

J-F PAQUET (VANDERBILT UNIVERSITY)



Beyond soft hadrons: electromagnetic probes from early time
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 Photons (𝛾) and dileptons (𝑙+𝑙−) are “holistic” probes:
produced at all stages, reflects the local properties of the plasma

Gale, Paquet, Schenke, Shen (2022) PRC



Beyond soft hadrons: electromagnetic probes from early time
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 Photons (𝛾) and dileptons (𝑙+𝑙−) are “holistic” probes:
produced at all stages, reflects the local properties of the plasma

Gale, Paquet, Schenke, Shen (2022) PRC

Experimental 
uncertainties
∼ 20-30%



Beyond soft hadrons: electromagnetic probes
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Bulk viscosity reduces 
blueshift of photons



MORE TRANSPORT COEFFICIENTS



More transport coefficients
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 Other conserved charges: 
e.g. finite baryon density

 𝜂/𝑠(𝑇, 𝜇𝐵), 𝜁/𝑠(𝑇, 𝜇𝐵)

 Charge diffusion

 Second order transport coefficients? 
(need to account for hydrodynamic 
fluctuations?) Baryon chemical potential

Ref.: Dexheimer et al 
(2019) Universe

𝜏𝜋Δ𝛼𝛽
𝜇𝜈

ሶ𝜋𝛼𝛽 + 𝜋𝜇𝜈 = 2 𝜼 𝜕𝜇𝑢𝜈 +⋯

+ (2nd order)
T
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SUMMARY



Summary

 Considerable progress over past decade, with strong community involvement

 Specific shear viscosity 𝜂/𝑠 at T=150-200 MeV remains constrained around 0.1-0.15

 Temperature dependence of specific bulk viscosity 𝜁/𝑠 still under investigation
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JETSCAPE Collaboration, (2021) PRC, PRL

Nijs, van der 
Schee, Gürsoy, 
Snellings (2021) 
PRC, PRL

Bernhard, Moreland, Bass (2019) Nat.Phys.
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Outlook

 Precision constrains on viscosities with community-wide efforts

 Consider capabilities of theory to describe measurements

 Measurements to isolate and study specific collision stages

 Leverage photons and dileptons, and additional probes

 Necessitates continued strong funding of:

 Theoretical research groups, including multidisciplinary ones (e.g. statistics)

 Topical collaborations and other theory/experimental collaboration
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Support critical to ensure that the knowledge generated by analyses of RHIC data are fully incorporated 
into our understanding of emergent QCD.


