Matching Conditions Across Time Evolution Stages of Ultrarelativistic Heavy Ion Collisions

Jean-François Paquet (Duke University)

January 11, 2021

The VIth International Conference on the INITIAL STAGES OF HIGH-ENERGY NUCLEAR COLLISIONS

The Time Evolution Stages of a Heavy Ion Collision

The quark-gluon plasma proper

More Realistic Time Evolution Stages of a Heavy Ion Collision

More Realistic Time Evolution Stages of a Heavy Ion Collision

More Realistic Time Evolution Stages of a Heavy Ion Collision

Transitioning from the initial stage to hydrodynamics

Initializing hydrodynamics

• Hydrodynamics describes the evolution of the energy-momentum tensor $T^{\mu\nu}$

$$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - (P + \Pi)(g^{\mu\nu} - u^{\mu} u^{\nu}) + \pi^{\mu\nu}$$

with

- ϵ the energy density
- *u^µ* the flow velocity
- $\pi^{\mu\nu}$ the shear tensor
- Π the bulk pressure
- 2nd order hydrodynamics requires the initialization of all four fields independently: *ε*, u^μ, π^{μν}, Π
 on an « initial condition hypersurface »
- $T^{\mu\nu}(\tau = \tau_0, \vec{x})$ can in principle be parametrized, with caveats

Jean-François Paquet (Duke)

Initializing hydrodynamics vs transitioning to hydrodynamics

- Models of the pre-hydro do not generally approach hydrodynamics:
 - IP-Glasma, EKRT, PYTHIA , AMPT, URQMD/SMASH, Glauber/Trento+free-streaming, ...

Practical test of smooth transition to hydrodynamics:

Smooth transition to hydro. rare in phenomenological studies, but would be beneficial:

- Sign of theoretical consistency of model
- Reduce theoretical uncertainty of model

Matching to 0+1D (boost-invariant) hydrodynamics

- In 0+1D hydro, we can characterize $T^{\mu\nu}$ with single component: energy density
- 0+1D dynamical models with smooth transition to hydrodynamics:
 - Kinetic theory (gluons, QCD, RTA) or AdS/CFT

Conclusion:

Properly scaled 0+1D systems approach hydro similarly

Timescale necessary to converge to hydro depends:

- Strength of interaction $\left(\frac{\eta}{s} \sim \frac{1}{\alpha_c^2}\right)$
- Energy density of the system

(or "effective temperature" $T_{eff} \propto$

Schlichting

[Poster session]

Matching to 2+1D hydrodynamics: the "KøMPøST" approach

- Take a 2+1D pre-hydro system: how does it approach hydrodynamics?
- Better approximation [KøMPøST]: decompose $T^{\mu\nu}$ in 0+1D background + linear perturbation

Jean-Francois Paquet (Duke)

Schenke [talk Tues.]

Ref.: Kurkela, Mazeliauskas, Paquet, Schlichting,

Matching to hydrodynamics: challenges

Approach to hydrodynamics in higher dimensions still under investigation

See e.g. Kurkela, van der Schee, Wiedemann, Wu, PRL 2020 (Kinetic theory, cylindrical symmetry); Behtash, Cruz-Camacho, Martinez PRD 2018 (Kinetic theory, Gubser symmetry); Denicol, Noronha PRD 2019 (Hydro, Gubser symmetry); Romatschke JHEP 2017 (Hydro, Semi-peripheral optical Glauber) See also van der Schee, Paul Romatschke & Pratt, PRL 2013;

- Additional challenges of small systems, high rapidities and lower $\sqrt{s_{NN}}$ [e.g. beam energy scan]
 - Hydrodynamic initialization hypersurface becomes more complex Dore [talk Thurs.]
 - Additional conserved quantities to initialize, e.g. baryon density

Denicol [talk Mon.]

Transitioning from hydrodynamics to particles: particlization

When and how to transition from hydrodynamics

- When to transition from hydrodynamics?
 - Spacetime hypersurface?
 - Spacetime (hyper)volume?
 - Criteria?

Temperature? Energy density? Knudsen number?

When and how to transition from hydrodynamics

- When to transition from hydrodynamics?
 - Spacetime hypersurface
 - Spacetime (hyper)volume?
 - Criteria? Temperature or energy density Knudsen number?

See e.g. Ahmad, Holopainen, Huovinen, PRC 2017; Oliinychenko, Huovinen, Petersen, PRC 2015; Eskola, Niemi, Ruuskanen PRC 2008; and references therein

When and how to transition from hydrodynamics

- When to transition from hydrodynamics?
 - Spacetime hypersurface
 - Spacetime (hyper)volume?
 - Criteria?
 Temperature or energy density Knudsen number?

See e.g. Ahmad, Holopainen, Huovinen, PRC 2017; Oliinychenko, Huovinen, Petersen, PRC 2015 ; Eskola, Niemi, Ruuskanen PRC 2008; and references therein

- See also:
 - Effect of matching the lattice equation of state to a hadron resonance gas
 - Challenges with sampling the hadronic moment distribution e.g. Oliinychenko, Koch, PRL 2019; Oliinychenko, Shi, Koch, PRC 2020

What is the hadronic momentum distribution consistent with hydrodynamics?

Auvinen [poster session]

Transitioning from hydrodynamics: particlization

$$T^{\mu\nu} = \sum_{n} g_{n} \int \frac{d^{3}k}{(2\pi)^{3}K^{0}} K^{\mu}K^{\nu} f_{n}(K)$$

= $\epsilon u^{\mu}u^{\nu} - (P + \Pi)(g^{\mu\nu} - u^{\mu}u^{\nu}) + \pi^{\mu\nu}$

 $\Rightarrow f_n(K) = function(\epsilon, u^{\mu}, \Pi, \pi^{\mu\nu});$ "n" is the hadron species

Fluid description	Hadronic momentum distribution
Ideal hydrodynamics & local thermal equilibrium	Equilibrium: Fermi-Dirac (baryons), Bose-Einstein (mesons)
Viscous hydrodynamics & deviation from equilibrium	?

Generic question for all quasi-particle descriptions

$$T^{\mu\nu} = \sum_{n} g_{n} \int \frac{d^{3}p}{(2\pi)^{3}P^{0}} P^{\mu}P^{\nu} f_{n}(P)$$

= $\epsilon u^{\mu}u^{\nu} - (P + \Pi)(g^{\mu\nu} - u^{\mu}u^{\nu}) + \pi^{\mu\nu}$

 $\Rightarrow f_n(K) = function(\epsilon, u^{\mu}, \Pi, \pi^{\mu\nu});$ "n" is the hadron species

Photon and dilepton emission rates, parton energy loss, etc, often depend on f(K): the so-called "viscous corrections"

Fluid description	Hadronic momentum distribution
Ideal hydrodynamics & local thermal equilibrium	Equilibrium: Fermi-Dirac (baryons), Bose-Einstein (mesons)
Viscous hydrodynamics & deviation from equilibrium	?

Fluid description	Hadronic momentum distribution
Ideal hydrodynamics & local thermal equilibrium	Equilibrium: Fermi-Dirac (baryons), Bose-Einstein (mesons)
Viscous hydrodynamics & deviation from equilibrium	?

- "14 Moments (Grad)" model and related [quadratic in P for shear viscosity]: $f(P) = f_{eq}(P) + f_{eq}(1 \pm f_{eq})(B_{\Pi}(P) \Pi + B_{\pi} P^{\mu} P^{\nu} \pi_{\mu\nu})$
- "Chapman-Enskog const Relaxation Time" [linear in P for shear viscosity]:

See e.g. McNelis, Everett & Heinz CPC 2021; Dusling, Moore & Teaney, PRC 2010 for discussion and primary references

Rocha [poster session]

Fluid description	Hadronic momentum distribution
Ideal hydrodynamics & local thermal equilibrium	Equilibrium: Fermi-Dirac (baryons), Bose-Einstein (mesons)
Viscous hydrodynamics & deviation from equilibrium	?

Recent developments:

Quantifying effect of uncertainty on phenomeno. constraints on shear and bulk viscosity

Fluid description	Hadronic momentum distribution
Ideal hydrodynamics & local thermal equilibrium	Equilibrium: Fermi-Dirac (baryons), Bose-Einstein (mesons)
Viscous hydrodynamics & deviation from equilibrium	?

Recent developments:

- Quantifying effect of uncertainty on phenomeno. constraints on shear and bulk viscosity
- New approach: Everett, Chattopadhyay & Heinz, arXiv:2101.01130
 Momentum distribution that maximizes the entropy given conditions on T^{µv}

$$T^{\mu\nu} = \sum_{n} g_n \int \frac{d^3 P}{(2\pi)^3 P^0} P^{\mu} P^{\nu} f_n(P)$$

Entropy current: $s^{\mu} = -\sum_{n} g_{n} \int \frac{d^{3}P}{(2\pi)^{3}P^{0}} P^{\mu} [f_{n} \ln f_{n} \mp (1 \pm f_{n}) \ln(1 \pm f_{n})]$ What is $f_{h}(P)$ that maximizes the entropy? $\delta(s_{\mu} u^{\mu})/\delta f_{h} = 0$

Hadronic momentum distribution
quilibrium: Fermi-Dirac (baryons), Bose-Einstein (mesons)
?
qui

Recent developments:

- Quantifying effect of uncertainty on phenomeno. constraints on shear and bulk viscosity
- New approach: $f_h(P)$ that maximizes the entropy
- Studying consistency of $f_h(P)$ ansatz with simplified transport theories
 - Molnar, arXiv:2012.1557: effect of bulk viscosity in 1-component gas with isotropic $2 \rightarrow 2$ interactions
 - Damodaran, Molnar, Barnaföldi, Berényi, and Nagy-Egri, PRC 2020: effect of shear viscosity in 0+1D parton cascade
 - See also

Molnar & Wolff, PRC 2017 Chakraborty & Kapusta, PRC 2017

Summary

Summary & outlook

- Considerable progress in understanding of how systems approach hydrodynamics
 - Understanding of hydrodynamics changing as well
 - Many results from simpler systems (e.g. conformal 0+1D)
 - For phenomenology, needs to better understand:
 - Higher dimension systems: 2+1D, non-boost-invariant 3+1D
 - Non-conformal systems
 - Approach to hydrodynamics in small and low $\sqrt{s_{NN}}$ systems
- Transition to hadron gas after hydrodynamics: Hydrodynamics Post-hydro
 - Mapping energy-momentum tensor to hadron momentum distribution still an outstanding problem

Questions?