Nuclear collisions as seen through photons

Jean-François Paquet November 21, 2022

Nuclear Physics seminar

The higher end of the electromagnetic spectrum

Image modified from Wikimedia

 $\sim 1 \text{ GeV}$

The higher end of the electromagnetic spectrum

Image modified from Wikimedia

RHIC and **LHC**

Relativistic Heavy Ion Collider (RHIC) [Brookhaven National Lab, Long Island, NY]

$$\sqrt{s_{NN}} \sim 10^2 \text{ GeV}$$

 $\sqrt{s_{NN}} \sim 10^3 \text{ GeV}$

Figure adapted from K. Tuchin (2013) AHEP

Ref: Owens (1987) RMP

PROTON-PROTON COLLISIONS

Hadronic decay photons in nuclear collisions

Ref: F. Bock, PhD thesis

Ref: Chun Shen, PhD thesis

 Σ^0

3.0

3.5

J-F PAQUET (VANDERBILT UNIVERSITY)

Hadronic decay photons in nuclear collisions

Ref: F. Bock, PhD thesis

Ref: Chun Shen, PhD thesis

Direct photons in p-p collisions: high p_T

Nuclear Physics B327 (1989) 105-143 North-Holland, Amsterdam

QCD CORRECTIONS TO PARTON-PARTON SCATTERING PROCESSES

F. AVERSA*, P. CHIAPPETTA, M. GRECO*, J.Ph. GUILLET**

 Can be calculated in collinearfactorization based perturbative QCD, up to next-to-leading order

$$\frac{\mathrm{d}\sigma_{\gamma}^{pp}}{\mathrm{d}p_{T}} = f_{a/A} \otimes f_{b/B} \otimes \mathrm{d}\hat{\sigma}_{ab \to \gamma/c+d} [\otimes D_{\gamma/c}]$$

Frag fct: Bourhis, Fontannaz, Guillet (1998) EPJ

Direct photons in proton-proton collisions: high p_T

- Hard partonic collisions
 - "Isolated"

Fragmentation

Direct photons in proton-proton collisions: low p_T

- Lower p_T dominated by fragmentation photons
- Perturbative QCD breaks down eventually at low p_T
- How to compute properly the low-p_T photon spectrum remains an open question

HEAVY-ION COLLISIONS

Photon energy spectrum in heavy-ion collisions

Systematic excess of low energy photons in nucleus collisions

(also observed by STAR and ALICE Collaborations)

Band is result expected from incoherent superposition of proton-proton collisions

Note: large uncertainty at low p_T

Ref.: PHENIX Collaboration [arXiv:2203.17187]

Photons in heavy-ion collisions: high p_T

• **Prompt photons** produced as superposition of nucleon-nucleon collisions ("binary 1:...~")

.

$$R_{AA}^{\gamma} = \frac{\frac{\mathrm{d}N_{\gamma}^{AA}}{\mathrm{d}p_{T}}}{\left(\frac{N_{binary}}{\sigma_{pp}^{inel}}\right) \frac{\mathrm{d}\sigma_{\gamma}^{pp}}{\mathrm{d}p_{T}}} \approx 1 \quad (\text{at high } p_{T})$$

Deviations from $R_{AA}^{\gamma} = 1$ originates from:

- Isospin effect (parton content of n vs p)
- Nuclear effects on parton distribution functions
- Parton energy loss

$$\frac{\mathrm{d}N_{\gamma}^{AA}}{dp_{T}} = \frac{N_{binary}}{\sigma_{pp}^{inel}} f_{a/A} \otimes f_{b/B} \otimes \mathrm{d}\hat{\sigma}_{ab \to \gamma/c+d} [\otimes D_{\gamma/c}]$$

Heavy-ion collisions

Prompt photons in proton-proton collisions

10⁻²

- Hard partonic collisions
 - "Isolated"

medium

Fragmentation

g .00000

10¹

PHENIX +

ALICE (prelim)

J-F PAQUET (VANDERBILT UNIVERSITY)

Photons from deconfined plasma

What is the spacetime and momentum profile of quarks/gluons/hadrons?

• How much radiation is emitted in each region?

Note: No clear separation between quark/gluon phase and hadronic phase

Photons from deconfined plasma

What is the spacetime and momentum profile of quarks/gluons/hadrons?

• How much radiation is emitted in each region?

Note: No clear separation between quark/gluon phase and hadronic phase

Relativistic hydrodynamics

Evolution of the energy-momentum tensor in space&time

$$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - (P + \Pi)(g^{\mu\nu} - u^{\mu} u^{\nu}) + \pi^{\mu\nu}$$

- ϵ is the energy density
- u^{μ} is the flow velocity (Landau frame: $T^{\mu\nu}u_{\nu} = \epsilon u^{\mu}$)
- Π and are $\pi^{\mu\nu}$ viscous components

- Evolution of the energy-momentum tensor in space&time $T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - (P + \Pi)(g^{\mu\nu} - u^{\mu}u^{\nu}) + \pi^{\mu\nu}$
- Conservation of energy and momentum: $\partial_{\nu}T^{\mu\nu} = 0$
- First-principle equation of state

Initial conditions

21

Relativistic hydrodynamics: viscosity

Evolution of the energy-momentum tensor in space&time

$$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - (P + \Pi)(g^{\mu\nu} - u^{\mu} u^{\nu}) + \pi^{\mu\nu}$$

- Conservation of energy and momentum: $\partial_{\nu}T^{\mu\nu} = 0$
- Mueller-Israel-Stewart relativistic viscous hydrodynamics

Mueller (1967) Zeit. fur Phys; Israel&Stewart (1979) Ann. Phys.

Solve hydrodynamics equations numerically (finite volume)

Photons from deconfined plasma

What is the spacetime profile of quarks/gluons/hadrons?

State of matter/TemperaturesGas of hadrons below $T \approx 160$ MeVDeconfinement for $T \approx 160 - 200$ MeVStrongly-coupled quark/gluons
for $T \sim 200 - 500$ MeV

Photon emission rate

Effective hadronic models

Extrapolated rates from low/high temperatures

Lattice QCD, holography, effective models

Weakly-coupled QGP at $T \gg 1$ GeV

Perturbative QCD

Results: Au-Au $\sqrt{s_{NN}} = 200 \text{ GeV}, 0-20\%$

Results: Pb-Pb $\sqrt{s_{NN}} = 2760 \text{ GeV}, 0-20\%$

Thermal photons dominate at low energy (p_T)

Photons from the early stage of the collision

27

Quark-gluon chemical equilibration time

Estimating the effect of chemical equilibration time

Kurkela and Mazeliauskas (2019) PRL

Delayed chemical equilibration: significant effect on the photon spectra

Photons from the early stage of the collision

Gale, Paquet, Schenke, Shen (2022) PRC

Results: momentum anisotropy

Figure adapted from K. Tuchin (2013) AHEP

$$\frac{1}{2\pi p_T}\frac{dN}{dp_T d\phi} = \left(\frac{1}{2\pi p_T}\frac{dN}{dp_T}\right) \left[1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\phi - \Psi_n))\right]$$

 More precisely: momentum anisotropy through photon-hadron correlation

$$\boldsymbol{v}_{n}\{\boldsymbol{SP}\}(\boldsymbol{p}_{T}) = \frac{\left\langle \boldsymbol{v}_{n}^{\boldsymbol{\gamma}}(\boldsymbol{p}_{T})\boldsymbol{v}_{n}^{\boldsymbol{h}} \cos\left(n\left(\Psi_{n}^{\boldsymbol{\gamma}}(\boldsymbol{p}_{T})-\Psi_{n}^{\boldsymbol{h}}\right)\right)\right\rangle}{\sqrt{\left\langle\left(\boldsymbol{v}_{n}^{\boldsymbol{h}}\right)^{2}\right\rangle}}$$

J-F PAQUET (VANDERBILT UNIVERSITY)

Momentum anisotropy from geometrical anisotropy

J-F PAQUET (VANDERBILT UNIVERSITY)

Results: Au-Au $\sqrt{s_{NN}} = 200 \text{ GeV}$

High $p_T v_2^{\gamma}$ increased by delayed chemical equilibration

The direct photon puzzle

PLASMA TEMPERATURE FROM PHOTON ENERGY SPECTRUM

Results: Au-Au $\sqrt{s_{NN}} = 200 \text{ GeV}, 0-20\%$

J-F PAQUET (VANDERBILT UNIVERSITY)

Results: Au-Au $\sqrt{s_{NN}} = 200$ GeV, 0-20%

$$\ln\left(\frac{1}{2\pi E}\frac{dN}{dE\ dy}\right) = cte - \frac{E}{T_{eff}}$$

centrality	$T_{\rm eff}~({ m GeV}/c)$	$T_{\rm eff}~({\rm GeV}/c)$
	$0.8 < p_T < 1.9 {\rm GeV}/c$	$2 < p_T < 4$
0% - 20%	$0.277 \pm 0.017 \ ^{+0.036}_{-0.014}$	$0.428 \pm 0.031 {}^{+0.031}_{-0.030}$
20% - 40%	$0.264 \pm 0.010 \ {}^{+0.014}_{-0.007}$	$0.354 \pm 0.019 {}^{+0.020}_{-0.030}$
40%- $60%$	$0.247 \pm 0.007 {}^{+0.005}_{-0.004}$	$0.392 \pm 0.023 {}^{+0.022}_{-0.022}$
60% - 93%	$0.253 \pm 0.011 \ ^{+0.012}_{-0.006}$	$0.331 \pm 0.036 {}^{+0.031}_{-0.041}$

Prompt photons subtracted before fit

Thermal photon spectrum: Doppler shift

.

$$\ln\left(\frac{1}{E}\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}^{3}p}\right) = \ln\left(\int\mathrm{d}^{4}X\frac{1}{E}\frac{\mathrm{d}\Gamma_{\gamma}}{\mathrm{d}^{3}p}(p,T(X),u^{\mu}(X),\dots)\right) \sim cte - \frac{E}{T_{eff}}??$$

Photon emission rate:
$$\frac{1}{E} \frac{d\Gamma_{\gamma}}{d^{3}p} \sim e^{-\frac{E}{T}}$$
Doppler shift
$$n\left(\frac{1}{E} \frac{dN_{\gamma}}{d^{3}p}\right) \approx \ln\left(\int d^{4}X \ e^{-\frac{P \cdot u(X)}{T(X)}}\right) + cte = \ln\left(\int d\phi d\eta_{s} dx_{\perp} \ e^{-\frac{P \cdot u(X)}{T(X)}}\right) + cte$$

At midrapidity,
$$P \cdot u = p_T \left(\cosh(\eta_s) \sqrt{1 + u_{\perp}^2} - u_{\perp} \cos(\phi) \right)$$

Spacetime profile of plasma: complicated, but can look at simple models

Bjorken hydrodynamics for longitudinal-dominated expansion: $T(\tau) = T_0 \left(\frac{\tau_0}{\tau}\right)^{c_s^2}$

→ Black disk approx:
$$T(\tau, r < \sigma) = T_0 \left(\frac{\tau_0}{\tau}\right)^{c_s^2}$$

Gaussian approx: $T(\tau, r) = T_0 e^{-\frac{r^2}{2\sigma^2}} \left(\frac{\tau_0}{\tau}\right)^{c_s^2}$
Paquet and Bass [arXiv:2205.12299]

raquel and Dass | arxiv:2205.12299 |

J-F PAQUET (VANDERBILT UNIVERSITY)

Thermal photon spectrum x (fm) $\ln\left(\frac{1}{F}\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}^{3}n}\right) \approx \ln\left(\int d\phi d\eta_{s} dx_{\perp} e^{-\frac{P \cdot u(x)}{T(X)}}\right) + cte$ $\ln\left(\frac{1}{F}\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}^{3}n}\right) \approx -\frac{E}{T_{0}} + \frac{3}{2}\log\left(\frac{T_{0}}{E}\right) + cte + O\left(\frac{T_{0}}{E}\right)$ x (fm) Paquet and Bass [arXiv:2205.12299] x (fm) $\ln\left(\frac{1}{E}\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}^{3}n}\right) \approx -\frac{E}{T_{0}} + \frac{5}{2}\log\left(\frac{T_{0}}{E}\right) + cte + O\left(\frac{T_{0}}{E}\right)$ $\ln\left(\frac{1}{E}\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}^{3}n}\right) \approx -\frac{E}{T_{0}} + \mu\log\left(\frac{T_{0}}{E}\right) + cte \approx -\frac{E}{T_{off}} + cte$ J-F PAQUET (VANDERBILT UNIVERSITY)

Results: Au-Au $\sqrt{s_{NN}} = 200$ GeV, 0-20%

Paquet and Bass [arXiv:2205.12299]

$$\ln\left(\frac{1}{2\pi E} \frac{dN}{dE \, dy}\right) = cte - \frac{E}{T_{eff}}; \quad T_0 \approx \frac{T_{eff}}{1 - \frac{T_{eff}}{E} \mu \ln \mu}$$

centrality $T_0(GeV)$ $T_{eff} (GeV/c)$ $T_0(GeV)$ $T_{eff} (GeV/c)$
 $0.8 < p_T < 1.9 \text{ GeV}/c$ $2 < p_T < 4$
 $0\% - 20\%$ 0.48 $0.277 \pm 0.017 \stackrel{+0.036}{-0.014}$ 0.64 $0.428 \pm 0.031 \stackrel{+0.031}{-0.030}$

Non-trivial relation between inverse slope and plasma temperature

Note: even more complicated due to Doppler shift

Results: Au-Au $\sqrt{s_{NN}} = 200 \text{ GeV}, 0-20\%$

Summary and outlook

Summary

- High-energy photons: heavy-ion collisions similar to proton-proton case
- Low-energy photons:
 - Enhancement with respect to proton-proton collisions
 - Exponential spectrum <u>+</u> consistent with thermal radiation from deconfined plasma
 - Azimuthal anisotropy: tension in model-data comparisons

Outlook

- Studying the early stage of heavy-ion collisions with photons
- "Multi-messenger" study of heavy-ion collisions
- Better prediction of low p_T photons in proton-proton collisions?

Many opportunities with dileptons as well

J-F PAQUET (VANDERBILT UNIVERSITY)